1)треугольнике abc ab=7 ac=20 dc=15. окружность описанная в этот треугольник касается его строн в точка m,n и k найдите площадь треугольника mnk 2) около круга описан прямоугольный треугольник с острым углом 60 и прилежащим катетом длиной 6дм. найти плошать круга
Надо найти z4 - z2; (это - расстояния от точки B до точек касания окружностей с BE)
По условию
z4 + z5 = z1 + z2 + 4;
z1 + z3 = z6 + z5; (точка E - середина AC, AE = CE)
z2 + z3 = z4 + z6; (=BE)
Вычитая из третьего уравнения второе, легко найти
z4 - z5 = z2 - z1;
Если это сложить с первым, то
2*z4 = 2*z2 + 4;
откуда z4 - z2 = 2;
ответ:4)а 5)в 6)б 7)в
Объяснение:4)Т.к центральный угол О =100°=> и дуга, на которую он смотрит тоже равна 100°,тогда х=50,потому что он вписаный(вписаный угол равен половине дуги ,на которую он опирается)
5)угол равен 70,тогда дуга равна 140(описанный угол,дуга в 2р больше него)
Вся окружность =360
360-140=220(это дуга,на которую смотрит х),тогда сам х=220:2=110(угол вписанный)
6)О=64,дуга тоже 64(центральный),х описанный =64/2=32
7)Т.к ВО(это радиус)=АД,то АД=ДО т.к ДО тоже радиус,тогда ВО в 2р меньше ВО,угол В=90 т.к радиус ,проведенный в точку касания явл. перпендикуляром на эту касательную.Тогда мы можем применить свойство треугольника :сторона,лежащая напротив угла в 30°=половине гипотенузы ,тогда угол ВАО=30,а ВАО=ОВС т.к это касательные вышли из 1ой точки,тогда угол ВАС=60