1. Треугольники АBC и МРО равны. ВС = 35 см, АС=30 см, АВ=50см, /_ А=50°, /_В=95°, /_С/_=35°. Найдите соответствующие стороны и углы треугольника BCD. 2. Периметр равнобедренного треугольника равен 35 см. Его основание больше боковой стороны в 1,5 раза. Найдите стороны данного треугольника.
3. Треугольники АВС и КРМ равны. Известно, что стороны треугольника АВС ВА = 4 см, АС = 6 см, ВС = 7 см. Найдите стороны треугольника КРМ.
1 этап:
Точка, прямая, окружность.
2 этап:
1. На плоскости нужно отметить произвольную точку
2. Через эту точку провести прямую произвольной длины
3. Взять циркуль и провести окружность с центром в точке, которую мы построили в 1 пункте
4. Отметить точки пересечения нашей окружности из 3 пункта и прямой (точки А и B) - это будут крайние точки нашего основания.
5. Не изменяя раствора циркуля провести из точек А и B окружности, точка пересечения этих окружностей будет 3 вершиной равнобедренного треугольника.
6. Соединить 3 полученные точки.
3 этап:
Пусть AB = a.
Отметим на нашем основании точку М = b ⋂ a. По рисунку эта точка совпадает с точкой пересечения окружностей, которые мы провели из крайних точек основания: точек А и B.
АМ = BM (как радиусы равных окружностей), а значит т.М совпадает с точкой пересечения медианы и основания. Отсюда, так как медиана совпадает с биссектрисой треугольник является равнобедренным.
4 этап:
Да, всегда будет иметь решения.
R = 2r , где R - радиус описанной окружности, r - радиус вписанной окружности
R = 2 * 2 = 4 (cм)
Радиус окружности, вписанной в этот треугольник можно выразить через сторону треугольника
r = a * √3 / 6, где а - сторона правильного треугольника
r * 6
a = ---------
√3
2 * 6 12 12 * √3 12√3
a = ----------- = --------- = ------------- = ----------- = 4√3 (см)
√3 √3 √3 * √3 3
Периметр равностороннего треугольника
P = 3a
P = 3 * 4√3 = 12√3 (cм²)