1.Трикутники АВС і АВD лежать в різних площинах. К, L, М, N – середини сторін АС, СВ, ВD, DА відповідно. Визначте взаємне розміщення прямих КL і NМ, NL і КМ, АС і ВD.
Найлем для начало стороны AB=√(8-4)^2+(2-6)^2 =√ 16 +16=2√8CD=√(-2-4)^2+(-1+3)^2 =√36+4 =√40 BC=√(4-8)^2+(-3-2)^2=√16+25=√41AD=√(-2-4)^2+(-1-6)^2=√36+49=√85 на рисунке можно видеть что это трапеция выходит, можно раздлить эту трапецию на два треугольника затем найти площадь каждой и суммировать Площадь треугольника S=ab/2*sinaнайдем угол между АВ и AD через скалярAB {4;-4}AD{-6;-7}cosa=4*-6+ 4*7 / √32*85 = 4/√2720теперь sina=√1-16/2720=52/√2720теперь площадь S= 52/√2720 * √2720/2 = 26 теперь площадь другого треугольника опять угол B (8; 2), C (4; -3), D (-2; -1) ВС={-4;-5} CD={-6;2} cosa= 24-10/√1640 = 10/√1640 sina = √1-100/1640 = √1540/1640 S=√41*40/2 * √1540/1640 =√1540/2 = √385 S=√385+26 площадь искомая
а)
Точка
Симметричная ей точка
A (0; 1, 2),
A1 (0; -1; -2);
B (3; -1; 4),
B1 (-3; 1; -4);
С (1; 0; -2),
С1 (-1; 0; 2).
б)
Ось симметрии — ось Ох:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; -1; -2);
B (3; -1; 4),
В1 (3; 1; -4);
С (1; 0; -2),
С1 (1; 0; 2).
Ось симметрии — ось Оу
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; 1; -2);
B (3; -1; 4),
B1 (-3; -1; -4);
С(1; 0; -2),
С1 (-1; 0; 2).
Ось симметрии — ось Oz:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; -1; 2);
B (3; -1; 4),
B1 (-3; 1; 4);
С (1; 0; -2),
С1 (-1; 0; -2).
в)
Если плоскость симметрии — плоскость Оху, то:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; 1; -2);
B (3; -1; 4),
В1 (3; -1; -4);
С (1; 0; -2),
С1 (1; 0; 2).
Плоскость симметрии — плоскость Oyz:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; 1; 2);
B (3; -1; 4),
B1 (-3; -1; 4);
С (1; 0; -2),
С1 (-1; 0; -2).
Плоскость симметрии — плоскость Oxz:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; -1; 2);
B (3; -1; 4),
B1 (3; 1; 4);
С (1; 0; -2),
С1 (1; 0; -2).