1. У рівнобедреному трикутнику DEF з основою DE градусні міри зовнішнього кута MFE і кута трикутника при вершині F-- відносяться як 7 : 2 (рис. 1). Знайдіть: а) кут DFE; б) кути при основі трикутника DEF; в) кут KDE, де DK — висота трикутника DEF
Стороны ромба содержатся в четырех прямых: АВ, ВС, СD и АD. Расстояние от М до ВС и СD равно МС=7 см, т.к. расстояние от точки до прямой - перпендикуляр, а по условию МС ⊥ плоскости ромба. Расстояние от М до прямой, содержащей сторону АD, равно наклонной МН, проведенной перпендикулярно к этой прямой. Длину ее найдем из прямоугольного треугольника МСН, в котором НС равна и параллельна высоте ромба. Угол СDН=углу А=45° СН=СD*sin (45°)=(8*√2):2=4√2 см МН=√(МС+СН)=√(32+49)=9 см Точно таким же будет расстояние до прямой, содержащей сторону АВ, т.к. все стороны ромба и соответственные углы при параллельных сторонах равны. ответ: 7 см до ВС и СD, и 9 см до АВ и АD bzs*
Сделаем рисунок. Можно хорды нарисовать параллельными, т.к. расстояние от центра окружности до хорд и радиус заданы условием, поэтому, поэтому длина хорд не меняется от места их расположения. Расстояние от точки до прямой измеряют отрезком, перпендикулярным к ней. ⇒ углы СКО и АМО - прямые, а треугольники СКО и АМО - прямоугольные. Радиус окружности является их гипотенузой, а половина АВ=9 . Из треугольника АМО найдем радиус r. Треугольник - египетский, т.к. отношение катетов 3:4, следовательно, радус равен 15 ( можно проверить по т. Пифагора). Треугольники СКО и АМО равны по гипотенузе и меньшему катету, из чего следует, что больший катет второго треугольника равен 12. СD=2 СК=24. ------- bzs*
АВ, ВС, СD и АD.
Расстояние от М до ВС и СD равно МС=7 см, т.к. расстояние от точки до прямой - перпендикуляр, а по условию МС ⊥ плоскости ромба.
Расстояние от М до прямой, содержащей сторону АD, равно наклонной МН, проведенной перпендикулярно к этой прямой.
Длину ее найдем из прямоугольного треугольника МСН, в котором НС равна и параллельна высоте ромба.
Угол СDН=углу А=45°
СН=СD*sin (45°)=(8*√2):2=4√2 см
МН=√(МС+СН)=√(32+49)=9 см
Точно таким же будет расстояние до прямой, содержащей сторону АВ, т.к. все стороны ромба и соответственные углы при параллельных сторонах равны.
ответ: 7 см до ВС и СD, и 9 см до АВ и АD
bzs*
Можно хорды нарисовать параллельными, т.к. расстояние от центра окружности до хорд и радиус заданы условием, поэтому, поэтому длина хорд не меняется от места их расположения.
Расстояние от точки до прямой измеряют отрезком, перпендикулярным к ней. ⇒
углы СКО и АМО - прямые, а треугольники СКО и АМО - прямоугольные. Радиус окружности является их гипотенузой, а половина АВ=9 .
Из треугольника АМО найдем радиус r.
Треугольник - египетский, т.к. отношение катетов 3:4, следовательно, радус равен 15 ( можно проверить по т. Пифагора).
Треугольники СКО и АМО равны по гипотенузе и меньшему катету, из чего следует, что больший катет второго треугольника равен 12.
СD=2 СК=24.
-------
bzs*