Проведем отрезок МК║АD. Так как М - середина АВ, МК- средняя линия трапеции. МК=(6+10):2=8
Примем коэффициент отношения СN:ND равным а.
Тогда СD=3a+5a=8a,
CK=KD=8a:2=4a, из чего следует NK=a.
Опустим высоту СН на АD.
Высота, проведенная из тупого угла равнобедренной трапеции, делит большее основание на отрезки, один из которых равен полуразности оснований, другой – их полусумме. =>
DH=(10-6):2=2, AH=MN=(10+6):2=8
МК║AD, СD – секущая => ∠CKM=∠CDA.
Прямоугольные ∆ СDH~∆ MKN по острому углу.
Из подобия следует: Отношение катетов к гипотенузе подобных прямоугольных треугольников равно.
NK:MK=HD:СD
a:8=2:8a
8a²=16 =>
a=√2 и СD=8√2
По т.Пифагора
CH=√(CD²-HD²)=√(128-4)=2√31
Площадь трапеции равна произведению высоты на полусумму оснований:
Примем высоту трапеции "h", верхнее основание "а", нижнее "в".
Боковые стороны равны 2h,как лежащие против угла в 30 градусов. Сторона в = а + 2(2h*cos30°) = a + 2(2h*(√3/2) = a + 2h√3. Площадь S = ((a + a + 2h√3)/2)*h = (a + h√3)*h = ah + h²√3. По заданию ah + h²√3 = 200. Отсюда сторона а = (200 - h²√3)/h. Периметр Р = 2*(2h) + a + a + 2h√3. Подставим вместо а её значение относительно h. P = 4h + 2h√3 + 2((200 - h²√3)/h) = (4h² + 400)/h. Производная функции равна: dP/dh = (4h² - 400)/h². Приравниваем нулю (достаточно числитель): 4h² - 400 = 0, h = √(400/4) = √100 = 10. Это значение высоты трапеции при минимальном периметре. Сам периметр равен: Р = (4*10² + 400)/10 = 800/10 = 80.
Проведем отрезок МК║АD. Так как М - середина АВ, МК- средняя линия трапеции. МК=(6+10):2=8
Примем коэффициент отношения СN:ND равным а.
Тогда СD=3a+5a=8a,
CK=KD=8a:2=4a, из чего следует NK=a.
Опустим высоту СН на АD.
Высота, проведенная из тупого угла равнобедренной трапеции, делит большее основание на отрезки, один из которых равен полуразности оснований, другой – их полусумме. =>
DH=(10-6):2=2, AH=MN=(10+6):2=8
МК║AD, СD – секущая => ∠CKM=∠CDA.
Прямоугольные ∆ СDH~∆ MKN по острому углу.
Из подобия следует: Отношение катетов к гипотенузе подобных прямоугольных треугольников равно.
NK:MK=HD:СD
a:8=2:8a
8a²=16 =>
a=√2 и СD=8√2
По т.Пифагора
CH=√(CD²-HD²)=√(128-4)=2√31
Площадь трапеции равна произведению высоты на полусумму оснований:
S=(2√31)•8=16√31 (ед. площади)
Боковые стороны равны 2h,как лежащие против угла в 30 градусов.
Сторона в = а + 2(2h*cos30°) = a + 2(2h*(√3/2) = a + 2h√3.
Площадь S = ((a + a + 2h√3)/2)*h = (a + h√3)*h = ah + h²√3.
По заданию ah + h²√3 = 200.
Отсюда сторона а = (200 - h²√3)/h.
Периметр Р = 2*(2h) + a + a + 2h√3.
Подставим вместо а её значение относительно h.
P = 4h + 2h√3 + 2((200 - h²√3)/h) = (4h² + 400)/h.
Производная функции равна: dP/dh = (4h² - 400)/h².
Приравниваем нулю (достаточно числитель):
4h² - 400 = 0,
h = √(400/4) = √100 = 10.
Это значение высоты трапеции при минимальном периметре.
Сам периметр равен: Р = (4*10² + 400)/10 = 800/10 = 80.