1. углы шестиугольника пропорциональны числам 3;4;4;5;3;5%.Найти эти углы. 2.Сколько сторон имеет многоугольник если его сумма его углов ровна 900градусов.
Постройки сначала равнобедренный треугольник, а затем постройки серединный перпендикуляр к отрезка AC. Точка пересечения серединного перпендикуляра с отрезок АС и будет точка пересечения медиана с АС.
Проведи прямую, проходящую через точки В и точку пересечения В1 серединного перпендикуляра со стороной АС. Получило медиану.
Чтобы построить серединный перпендикуляр к отрезку АС, надо построить две окружности с радиусом АС в центрах в точках А и С. Затем просто соединить точки пересечения двух окружностей.
Объяснение:
Постройки сначала равнобедренный треугольник, а затем постройки серединный перпендикуляр к отрезка AC. Точка пересечения серединного перпендикуляра с отрезок АС и будет точка пересечения медиана с АС.
Проведи прямую, проходящую через точки В и точку пересечения В1 серединного перпендикуляра со стороной АС. Получило медиану.
Чтобы построить серединный перпендикуляр к отрезку АС, надо построить две окружности с радиусом АС в центрах в точках А и С. Затем просто соединить точки пересечения двух окружностей.
Вариант 1.
1.
Для начала найдём один из отрезков, полученным, делением гипотенузы высотою: отрезок BD.
Так как это высота, то отрезок образует 2 прямых угла: <BDA; <ADC.
Тоесть образуется 2 прямоугольных треугольника: ΔBDA; ΔADC.
По теореме Пифагора — BC равен:
Чтобы найти всю гипотенузу BC — вычислим оставшийся отрезок DC.
Для этого нам нужна одна из формул вычисления высоты прямоугольного треугольника:
DC = 9; BD = 16 => BC = 9+16 = 25см.
По теореме Пифагора, AC равен:
Косинус угла равен отношению прилежащего катета к гипотенузе, то есть:
Вывод: AC = 21.9см; cos(<C) = 0.876.
2.
Для начала найдём оставшийся стороны паралеллограмма: BD & AD, которые друг другу равны.
Так как BD — перпендикулярен стороне AD — то он образует прямой угол с этой сторон, тоесть: ΔADB — прямоугольный.
Формула вычисления стороны BD, зная угол A, и гипотенузу AB:
Осталось найти сторону AD (по теореме Пифагора), на которой проведена высота BD, чтобы потом найти площадь:
Теперь, формула вычисления площад параллелограмма такова:
Вывод: S = 71.1см².