1. Укажите координаты точки, симметричной точке М(3; -6) относительно начала координат.
2 Бесконечное число центров симметрии имеет: а) луч; б) прямая; в) окружность; г) квадрат.
3. Построить образ тупоугольного треугольника МКР при :
1) симметрии относительно точки О;
2) симметрии относительно прямой, содержащей сторону МК.
АВ- одна из сторон основания, РК=2√2 -апофема, ∠ОРК угол наклона апофемы к основанию, равен 45°.
∠АОВ=360/12=30°. В основании лежат 12 треугольников, Вычислим площадь одного из них.
ΔРОК. ОР=ОК=2
ОК⊥АВ.
ΔАОК: ∠АОК=30/2=15°. tg15°=АК/ОК; АК=0,27·2=0,54; АВ=0,54·2=1,08.
SΔАОВ=0,5·ОК·АВ=0,5·2·1,08=1,08.
Площадь основания состоит из 12-ти таких треугольников.
Площадь основания пирамиды равна S=1,08·12=12,96.
Объем пирамиды равен V=12.96·2/3=8,64
ответ : 8,64 куб. ед.