1. [ ) Установите соответствие между длинами сторон треугольника и его видом (по величине углов) Длины сторон треугольника 1. 8; 9; 13 2. 4; 6; 7 3. 5; 12; 13 4. 7; 9; 12 Вид треугольника А. Остроугольный В. прямоугольный С. тупоугольный 1. 2. 3. 4.
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
Если провести к большему основанию трапеции две высоты из углов, принадлежащих меньшему основанию, то мы получим прямоугольник, в котором противоположные стороны равны. Так же мы получим два прямоугольных треугольника. Теперь из большего основания вычитаем сторону прямоугольника, которая параллельна меньшему основанию трапеции: 16 - 8=8. Так как у нас два равных треугольника, то мы этот результат делим на 2 : 8 : 2 = 4 - это катет прямоугольного треугольника. Теперь находим высоту, которую мы провели ранее, по теореме Пифагора : Высота = 5 ^ 2 - 4 ^2= 25 - 16 = 9. Теперь из получившегося результата извлекаем корень и получаем 3. Это высота. Дальше пользуемся формулой площади трапеции: S= ((a + b) h) / 2 S= (( 16 + 8) 3) / 2 = 36 ответ : 36
16 - 8=8.
Так как у нас два равных треугольника, то мы этот результат делим на 2 :
8 : 2 = 4 - это катет прямоугольного треугольника. Теперь находим высоту, которую мы провели ранее, по теореме Пифагора :
Высота = 5 ^ 2 - 4 ^2= 25 - 16 = 9. Теперь из получившегося результата извлекаем корень и получаем 3. Это высота.
Дальше пользуемся формулой площади трапеции:
S= ((a + b) h) / 2
S= (( 16 + 8) 3) / 2 = 36
ответ : 36