1) Відомо, що ВК – бісектриса кута АВС. Знайти: а) кут АВК, якщо кут АВС – прямий;
б) кут АВС, якщо кут АВС більший від кута АВК на 20°.
2) Знайти суміжні кути, якщо один із них у 2 рази більший від іншого.
3) Знайти кути, що утворилися при перетині двох прямих, якщо:
а) сума трьох із цих кутів дорівнює 325°;
б) один із цих кутів в 11 разів менший від суми трьох інших.
Объяснение:
Дано:
АH=12 см, АВ=13 см, D = 26 = 2r
BC = ?
описанная окружность с центром на серединных перпендикуляров .
для вписанного в окружность Δ R= (a*b*c)/ (2S)
АК = КС = 1/2 *АС; АМ = МВ = 1/2 *АВ
из ΔАОМ ; ОМ = √(АО^2 - AM^2) = √(13^2 - (13/2)^2)= √[(13^2* (1- 1/4)]
OM = 6.5√3 то есть АО- гипотенуза, АМ - 1/2*АО , ⇒ ∠АОМ = 30° .
ΔАОВ - равнобедренный АО = ОВ, ∠ОАВ = ∠ОВА = 60 ⇒ ΔАОВ-равносторонний, ⇒ ΔАВС равнобедренный, СМ =медиана, биссектриса, высота. (см рис.2) ⇒ AC = BC
( из ΔBHС ) BH = √(AB^2-BH^2) = √(13^2 - 12^) = √(13+12)(13-12)=√25 = 5
ΔBHA и Δ СКО подобны как Δ с взаимно ⊥ сторонами, а именно
R= (a*b*c)/ (4S) = AC^2* AB / (4SΔавс)
SΔавс 4 1/2*BH*AC
Відповідь: 20см
Пояснення: Трикутник 1 та трикутник 2 - подібні за першою ознакою подібності.
Знайдемо периметр першого трикутника:
Р₁=2*5+6=16.
Знайдемо висоту проведену до основи першого трикутника.Дивись малюнок в файлі
Так як ця висота АК одночасно є медіаною сторони за властивістю, То АК=4 см ( Египетський трикутник 3,4,5, або за теоремою Пифагора
ΔАВК, ∠К=90°, АВ=5 см, АК=АС:2=3 см
(cм) )
Знайдемо коефіцієнт подібності трикутників k
Висоти трикутників теж відносяться між собою з коеффіціетом k
h₂=4*5=20(cм)