1. В кубе АВСDА1В1С1D1 найти :
Угол между ребром АА1 и диагональю В1D;
Угол между прямой АС1 и плоскостью грани DD1С;
Расстояние между прямыми АС и А1В1.
Угол между плоскостями АВ1С и А1В1С.
2. В кубе АВСDА1В1С1D1 найти:
Угол между прямыми В1С и ВD;
Расстояние между прямыми ВА1 и В1С1;
Угол между прямой А1В и плоскостью АВС;
Угол между плоскостями ВА1С1 и ВА1D1.
3. В прямоугольном параллелепипеде АВСDА1В1С1D1 боковое ребро равно диагонали основания. Найти:
Угол между ВD и А1С1;
Угол между прямой АС1 и плоскостью BВ1С;
Угол между плоскостью основания и плоскостью АА1С.
Сечение плоскостью, проходящей через середину ребра АD перпендикулярно ВD1;
4. В прямоугольном параллелепипеде АВСDА1В1С1D1 найти:
Угол между прямыми АВ и ОС1, где О – точка пересечения диагоналей основания;
Угол между прямой АВ1 и плоскостью АВС1, если ВВ1=ВС;
Угол между плоскостями АВС1 и АА1D;
Сечение, проходящее через точки О, С, параллельно прямой А1В.
5. В правильной призме АВСА1В1С1 найти:
Угол между прямыми АС1 и D1С;
Угол между прямой А1В и плоскостью АА1С;
Угол между плоскостями ВСА1 и ВВ1С1;
Расстояние между прямыми СС1 и А1В.
6. В основании прямой призмы АВСА1В1С1- равнобедренный прямоугольный треугольник с прямым углом В. Найти:
Угол между прямыми ВС1 и АС;
Угол между прямой ВС1 и плоскостью АА1С;
Угол между плоскостями АВ1С и АСВ;
Сечение, проходящее через центр описанной окружности основания, перпендикулярно ребру АВ.
7. В основании прямой призмы АВСDА1В1С1D1 – ромб, АВ=ВД. О – точка пересечения диагоналей нижнего основания. Найти:
Угол между прямыми АС и ВD1;
Угол между прямой АС1 и плоскостью ВВ1D;
Расстояние между прямыми А1А и В1D1;
Угол между плоскостями АВС и А1В1С.
8. В правильной четырёхугольной пирамиде РАВСD О–точка пересечения диагоналей основания. Найти:
Угол между прямыми РО и АВ;
Угол между прямой РС и плоскостью ВРD;
Угол между плоскостями АРD и ВРС;
Сечение, проходящее через точки В, О, параллельно прямой АР.
9. В правильной треугольной пирамиде РАВС найти :
Угол между прямыми МК и РС, где М –середина ребра АВ, К – середина высоты пирамиды;
Угол между прямой АР и плоскостью ВРС, если АО=hello_html_6a1c94eb.gifАР;
Угол между плоскостью АВС и плоскостью MВК;
Сечение плоскостью, проходящей через точку К, перпендикулярно АВ.
10. В пирамиде DАВС ребро DА перпендикулярно плоскости основания, АВ = ВС=АС. Найти:
Угол между прямыми DО и ВС, где О – центр основания;
Угол между прямой АВ и плоскостью АСD;
Угол между плоскостями АВD и ОАD;
Сечение плоскостью, проходящей через точку О параллельно грани АВD.
11. В пирамиде РАВСD в основании квадрат, О- середина ребра АВ, РО перпендикулярно плоскости основания. Найти:
Угол между прямыми АР и ВС;
Угол между прямой РС и плоскостью АВС;
Угол между плоскостями АРВ и РВС, если АР=АD;
Сечение плоскостью, проходящей через центр квадрата, перпендикулярно грани РDС.
12. В правильном тетраэдре РАВС найти:
Угол между прямыми АP и ВС;
Угол между прямой ВС и плоскостью АPС;
Сечение плоскостью, проходящей через середины рёбер АВ, АС и PС;
Угол между полученной плоскостью и плоскостью АВС.
Если следовать логике, то один угол состоит из 2 одинаковых частей, а другой угол из 3. Тогда нам нужно найти эту одну часть, из которой состоят углы. (Т.к. в треугольнике углы равны 180 градусов, то мы вычитаем из 180 найденный угол, 80, получается 100. Эти два угла в сумме дают 100 градусов). Найдём общее число частей, из которых состоят углы. 2 + 3 = 5. Тогда 100 градусов нужно разделить на 5 частей. Одна часть равна 20. Один угол состоит из двух таких частей: он равен 40. Другой угол состоит из трёх частей: он равен 60.
Так как двугранный угол при стороне основания равен 60 градусов, то апофема равна ОД/cos 60 = (8/3)/(1/2) = 16/3.Сторона основания равна h/cos 30 = 8/(√3/2) = 16/√3. половина стороны равна 8/√,3.
Тогда боковое ребро пирамиды равно √((16/3)²+(8/√3)²) =
=√((256/9)+(64/3)) = √( 448 / 9) = √ 49.77778 = 7.055337 см.