1. В параллелепипеде АВСD А1В1С1D1 точка Е – середина ребра В1С1, К – точка пересечения отрезков А1Е и В1D1. Разложите вектор ВК по векторам ВА, ВВ1, ВС.
ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
Точка касания с гипотенузой ВС является точка Е (СЕ=2, ВЕ=3), с катетом АС точка К, с катетом АВ точка М. Угол А прямой.
СЕ=СК=2, длины отрезков выходящих из одной вершины до точек касания к окружности равны, по этому же правилу
ВЕ=ВМ=3
Центр окружности О, r-радиус окружности. ОК=ОМ=r и ОК перепендик АС, ОМ перпендик АВ. АМОК-квадрат и АМ=АК=r
Тогда АС=r+2, АВ=r+3, ВС=2+3=5 по теореме Пифагора
ВС^2=АС^2+АВ^2
5^2=(r+2)^2+(r+3)^2
r^2+4r+4+ r^2+6r+9=25
2r^2+10r+13=25
2r^2+10r-12=0 сократим все на 2
r^2+5r-6=0
найдем дискрим. Д=25+24=49
корень из Д=7
r1=(-5+7)/2
r1=1
r2=(-5-7)/2=-6(радиус не может быть отрицательным)
Радиус вписан.окружности равен r=1см
решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3