:1.в правильном тетраэдре abcd с ребром, равным 1, найдите скалярное произведение ac⋅ab. ответ запишите в виде десятичной дроби без пробелов. 2.в правильном тетраэдре abcd с ребром, равным 1, найдите скалярное произведение db⋅bc. ответ запишите в виде десятичной дроби без пробелов. 3. в правильном тетраэдре abcd с ребром, равным 1 , найдите скалярное произведение hq⋅qc , где h и q — середины ребер ac и bd соответственно. а)3/√2 б) 1/2 в) 1/√3 г) 2/√3 д) 3√2/2
1. Пусть одна сторона параллелограмма равна х см, а вторая у см. Тогда периметр параллелограмма будет равен 2х+2у=48 см, но по условию известно что х-у=7 см.
Решим полученную систему уравнений:
2х+2у=48
х-у=7 |*2 (умножим второе уравнение на 2);
2х+2у=48 (сложим полученные уравнения)
+
2х-2у=14;
2х+2х+2у-2у=48+14
4х=62
х=62/4
х=15,5
Найдем у:
х-у=7
15,5-у=7
-у=7-15,5
у=8,5
ответ: Стороны параллелограмма равны 15,5 см и 8,5 см.
2. АВ=СД (так как АВСД – параллелограмм)
Свойство биссектрисы параллелограмма:
Биссектриса параллелограмма отсекает равнобедренный треугольник
Значит АВ=ВЕ=40 см. и СД=СЕ=40 см.
ВС=ВЕ+СЕ=40+40=80 см.
ответ: 6 (ед. длины)
Объяснение:
Проведем DE║AM. В треугольнике АМС отрезки АD=DC ( т.к. ВD медиана ∆ АВС и делит АС пополам). DE параллельна АМ и является средней линией ∆ АМС.⇒ СЕ=ЕМ.
В ∆ ВDE отрезок ОМ - средняя линия ( ВО=ОD, и ОМ║DE). ⇒ ВМ=МЕ=ЕС.
Аналогично, проведя из D параллельно СК прямую DH доказывается равенство ВК=КН=НА. ⇒ Так как ∆ АВС равнобедренный, ВК=ВМ. Треугольник КВМ подобен ∆ АВС по пропорциональным сторонам и углу между ними. Коэффициент подобия k=ВМ:ВС=1/3, откуда КМ=АС:3=18:3=6 (ед. длины).