1. в произвольном треугольнике проведена средняя линия, отсекающая от него меньший треугольник. найдите отношение площади меньшего треугольника к площади данного треугольника. 2. вокруг трапеции описана окружность, центр
которой находится на ее большем основании. найдите углы трапеции, если ее меньшее основание в два раза меньше большего основания. 3. угол между биссектрисой и высотой, проведенной из вершины большего угла треугольника, равен
12*. найдите углы этого треугольника, если его наибольший угол в четыре раза больше наименьшего угла. 4. о1 и о2 - центры двух касающихся внешним образом окружностей. прямая о1о2 пересекает первую окружность (с центром в точке о1)
в точке а. найдите диаметр второй окружности, если радиус первой равен 5 см, а касательная, проведенная из точки а ко второй окружности, образует с прямой о1о2 угол в 30*.
1. Пусть a,H - основание и высота основного треугольника.
m,h - основание и высота отсеченного треугольника.
Так как m - средняя линия, то:
m = a/2, h = H/2
Значит площадь отсеченного треугольника - в 4 раза меньше исходного.
ответ: s/S = 1/4.
2. ABCD - равнобедренная трапеция (около нее можно описать окружность)
т.О - середина AD (большего основания). AD = 2R - диаметр окр-ти. ВС = R - радиус окр-ти.
Тогда радиусы ОВ и ОС разбивают трапецию на три правильных треугольника со стороной R.
Значит углы трапеции: 60; 60; 120; 120 гр.
3. Рисуем тр. АВС так, что Угол В - наибольший ( тупой). Проведем биссектрису ВК и высоту ВМ из вершины этого угла.
Пусть Угол А - наименьший, А = х.
Тогда В = 4х, С = 180 - 5х.
В треугольнике ВКМ угол ВКМ = 90 - 12 = 78 гр. Он является внешним к тр-ку АВК. Значит он равен сумме внутренних углов А и В/2.
х + 2х = 78
3х = 78
х = 26, 4х = 104, 180 - 5х = 50
ответ: 26, 50, 104 гр.
4. Рисуем две касающиеся окружности: левая (меньшая) О1 и правая(большая) О2. Проводим прямую через точки О1 и О2. Крайняя левая точка пересечения с окр О1 пометим как А. Проводим из точки А касательную АВ к окр. О2. В - точка касания.
Рассмотрим прям. тр-ик АВО2. В нем:
АО2 = 2R1 + R2 = 10 + R2, (гипотенуза).
О2В = R2 - катет против угла в 30 гр.
Значит 2R2 = 10 + R2
R2 = 10, 2R2 = 20
ответ: 20