1) В прямо угольном треугольнике ABC гипотенуза AB равна 38 см, угол B равен 60. Найдите катет BC 2) В треугольнике MKT угол К равен 90 Градусов. Высота KH образует с катетом MK угол равный 32 градусом. Найдите острый угол треугольника MKT
3) В треугольнике KPE < P = 90 Градусов, угол K равен 60 градусов. На катите PE взята точка M так, что < KMP = 60 Градусов. Найдите PM, если EM= 16 см
ЗАДАНИЕ 1
В прямоугольном треугольнике сумма острых углов составляет 90°, тогда <А=90-60=30°. Катет лежащий напротив него равен половине гипотенузы поэтому ВС=38/2=19см
ОТВЕТ: ВС=10см
ЗАДАНИЕ 2
Высота КН делит ∆КМТ на 2 прямоугольных треугольника МКН и КТН. Рассмотрим полученный ∆КМН. В нём <МКН=32° и так как сумма острых углов прямоугольного треугольника составляет 90°, то <М=90-32=58°. Также в ∆КМТ, <Т=90-58=32°.
ОТВЕТ: угол Т=32°
ЗАДАНИЕ 3
Сторона КМ образует с катетом МР <КМР=60° и ещё один прямоугольный треугольник КМР. Сумма острых углов прямоугольного треугольника составляет 90°, поэтому <МКР=90-60=30°
Также в ∆РКЕ <Е=90-60=30°.
<МКР=<Е=30°, а катет лежащий напротив него равен половине гипотенузы, поэтому КЕ=2×КР; КМ=2×РМ
Пусть РМ=х, тогда КМ=2х. Найдём КР по теореме Пифагора:
КР²=КМ²-РМ²=(2х)²-х²=4х²-х²=3х²
КР=√3х². Рассмотрим ∆РКЕ. Так как КЕ=2×КР, то КЕ=2√(3х²)
Если РМ=х, тогда РЕ=16+х
Составим уравнение используя теорему Пифагора:
КР²+РЕ²=КЕ²
(√3х²)²+(16+х)²=(2√(3х²))²
3х²+256+32х+х²=4×3х²
4х²+32х+256=12х²
4х²-12х²+32х+256=0
-8х²+32х+256=0 |÷(-8)
х²-4х-32=0
Д=16-4(-32)=16+128=144
х1=(4-12)/2= -8/2= –4
х2=(4+12)/2=16/2=8
х1 = –4 нам не подходит поскольку сторона не может быть отрицательной поэтому используем х2=8
х=РМ=8см
ОТВЕТ: РМ=8см