1. В прямоугольном треугольнике DEC гипотенуза DC= 24 см, а один из катетов равен 12 см. Найдите углы треугольника.
2.В треугольнике АВС угол С равен 600, угол В равен 900. Высота ВВ1 равна 2 см. Найдите АВ.
3.В прямоугольном треугольнике DCE с прямым углом С проведена биссектриса EF, причем FC= 14 см. Найдите расстояние от
точки F до прямой DE.
4.В треугольнике АВС угол А равен 500 , а угол В в 12 раз меньше угла С. Найдите углы В и С.
5. Периметр равнобедренного треугольника равен 45 см, а одна из его сторон больше другой на 12 см. Найдите стороны треугольника.
по теореме Пифагора находим меленький отрезок на большем основании трапеции 13 ²=12²+х²
х²=13²-12²
х²=169-144
х²=25
х=5
т.к. это трапеция равнобедренная, с двух сторон будут одинаковые отрезки отрезки, значит, большее основание будет равно: 5+5+7=17 (см)
Площадь трапеции равна: средняя линия*высоту.
Средняя линия равна: (7+17)/2=12(см)
Отсюда площадь равна: 12*12=144 (см²)
25 х² = 16х² + 81
9х² = 81
х² = 9
х = 3
Значит второй катет равен 4 * 3 = 12
а гипотенуза 5 * 3 = 15
Радиус описанной окружности равен половине гипотенузы
R = 15 : 2 = 7,5см
2) Предположим, что проекция катета равного 4 см на гипотенузу равна х см, тогда по соотношениям в прямоугольном треугольнике
4² = х * (х +6), получим квадратное уравнение
х² + 6х - 16 = 0. по теореме обратной к теореме Виета. Получим корни
х₁ = 2 и х₂ = -8(второй корень не подходит по условию задачи).
Значит гипотенуза равна 2 +6 = 8 см, а высота h² = 2 * 6 = 12
h = √12 = 2√3cм