1 В равнобедренном треугольнике АВС с основанием АС и углом при вершине
В, равным 36о, проведена биссектриса АК. Докажите, что треугольники СКА
и АКВ равнобедренные..
2 В равнобедренном треугольнике АВС с основанием АС проведена медиана ВМ.
На ней взята точка О. Докажите равенство треугольников АМО и СМО.
3.В треугольнике АВС ∠ В = 90о, ∠ С = 60о, ВС = 2 см. На стороне АС отмечена
точка D так, что угол АBD равен 30о.Найдите длину отрезка АD.
АН=2 (катет против угла 30°).
ВН=2√3.СР=2 (катет против угла 30°).
Тогда DP=BH=2√3.
HP=AC-2*AH=1.
DH=√(DP²+HP²)=√(12+1)=√13. (по Пифагору).
DB=√(DH²+HB²)=√(13+12)=5. (по Пифагору).
ответ: BD=5.
При варианте, когда АВ=AD=4, BC=DC и <BAC=<CAD, имеем:
ВН=DH=2√3. (основания высот H и Р треугольников cовпадут). DB=√(DH²+HB²)=√(12+12)=√24 = 2√6. (по Пифагору).
ответ: BD=2√6.
Надо сразу отметить, что задача имеет решение, если трапеция является равнобедренной. В этом случае и её проекция будет так же равнобедренной трапецией. При проекции, упомянутой в задаче, искажаются (уменьшаются) размеры, ориентированные в одном направлении, а размеры, ориентированные в другом направлении, перпендикулярно искаженным, остаются без изменения. Тогда отношение площади проекции трапеции к площади самой трапеции будет равно косинусу угла между плоскостями трапеций (см. рис. 1). Таким образом, надо найти площадь проекции трапеции (см. рис. 2). Как известно площадь трапеции равна произведению средней линии трапеции на ее высоту. Среднюю линию, полагаю, Вы найдете сами, поскольку основания трапеции даны. Высоту то же, думаю, найти Вам не трудно по теореме Пифагора. Таким образом, Вы найдете, что площадь проекции трапеции равна 72 квадратных сантиметра. Отношение площади проекции трапеции к площади самой трапеции = 72/48√ 3 = 3/2√ 3 = √ 3/2. И искомый угол = arccos√ 3/2. Т. е. искомый угол равен углу, косинус которого равен корень квадратный из трех делёный на два. Постарайтесь сами найти этот угол. В комментариях можете сообщить окончательный результат, а я подскажу верно ли Вы решили.