1. В равнобедренном треугольнике боковая сторона равна 94, а угол, лежащий напротив основания, равен 120°. Найдите площадь треугольника. 2. Высоты параллелограмма равны 2 см и 6 см, а его площадь равна 48 см2. Найдите длины сторон параллелограмма
3. В прямоугольной трапеции основания ы 6 см и 9 см, а большая боковая сторона равны 5 см. Найти площадь трапеции.
4. В ромбе сторона равна 54, одна из диагоналей 54, а угол, из которого выходит эта диагональ, равен 120°. Найдите площадь ромба.
5. В прямоугольнике одна сторона равна 45, а диагональ равна 53. Найдите площадь прямоугольника. -
Значится рисуем тупоугольный треугольник abc, в котором тупой угол c, а сторона ac=bc и ∠a=∠b
Из вершины b проводим высоту к продолженной стороне ac, т.е. высота лежит за пределами Δabc, точку пересечения с продолженной стороной обзовем k, получим высоту bk
Теперь проведём биссектрису из вершины b к стороне ac, в точке пересечения поставим f.
Получим угол между биссектрисой и высотой, т.е. ∠fbk=48°
Примем ∠fbc=x, тогда ∠a=∠b=2x
Чтобы найти ∠с нужно сначала найти ∠f, рассмотрим Δfbk:
Сумма трёх углов =180°, значит ∠f=180-90-48=42°
Теперь рассмотрим Δfbc и выразим ∠c:
∠c=180-42-x
∠c=138-x
Теперь возвращаемся к нашему исходному Δabc и составляем уравнение:
2х+2х+(138-х)=180
4х+138-х=180
3х=42
х=14
∠a=∠b=2x
Подставляем, получаем
∠a=∠b=28°
∠c=180-28-28
∠c=124
ответ: углы треугольника равны 28, 28 и 124 градуса