1)В треуг.АВС АВ=5см, ВС=6см, АС=7см. Какой из углов найбольший, какой- найменьший? 2)Найти третью сторону равнобедренного треуг.,если две его стороны 8см и 3см. 3)В прямоугольном треуг. МРК угол М=90, угол К=27. Найти угол Р
1) Напротив самой большой стороны лежит самый большой угол. Самая большая сторона - это АС. Она лежит напротив ∠В. Значит ∠В - наибольший. АВ - наименьшая сторона. Лежит напротив ∠С. Значит ∠С - наименьший.
2) Так как треугольник равнобедренный, то третья сторона равна 3 см или 8 см. Если эта сторона равна 3 см, то сумма двух боковых сторон равна 3+3=6 см<8см - основания треугольника. Это противоречит неравенству треугольника. Значит вторая боковая сторона равна только 8 см. Так как сумма боковых сторон равна 8+8=16см>3 см. Значит искомая сторона равна только 8 см.
3) По теореме о сумме углов в Евклидовой геометрии получаем
1) ∠С - наименьший, ∠В - наибольший.
2) 8 см
3) ∠Р=63°
Объяснение:
1) Напротив самой большой стороны лежит самый большой угол. Самая большая сторона - это АС. Она лежит напротив ∠В. Значит ∠В - наибольший. АВ - наименьшая сторона. Лежит напротив ∠С. Значит ∠С - наименьший.
2) Так как треугольник равнобедренный, то третья сторона равна 3 см или 8 см. Если эта сторона равна 3 см, то сумма двух боковых сторон равна 3+3=6 см<8см - основания треугольника. Это противоречит неравенству треугольника. Значит вторая боковая сторона равна только 8 см. Так как сумма боковых сторон равна 8+8=16см>3 см. Значит искомая сторона равна только 8 см.
3) По теореме о сумме углов в Евклидовой геометрии получаем
∠М+∠Р+∠К=180°
90°+∠Р=27°=180°
∠Р=180°-90°-27°
∠Р=90°-27°
∠Р=63°