1.В треугольнике АВС А=70˚, В=80˚, ВЕ - биссектриса. Через точку Е проведена прямая а, параллельная ВС, ЕС=7 см. Найдите: а) расстояние между прямыми а и ВС; б) расстояние от точки Е до прямой АВ. Решите
Дано: ABCD — паралаллелограмм; P = 80 см; BH ┴ AD, BH = 7,5 см; угол A = 30°. Найти: AB, BC, CD, AD. Решение. ΔABH — прямоугольный, т.к. по условию BH ┴ AD (угол ABH = 90°) BH = 0,5AB, т.к. по условию угол A = 30°, а в прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы. AB = 2BH = 2 * 7,5 см = 15см AB = CD, BC = AD (по определению параллелограмма) CD = AB = 15 см P = 2AB + 2BC 2BC = 80 см - 2 * 15см = 50 см AD = BC = 50 см : 2 = 25 см ответ: AB = CD = 15 см, BC = AD = 25 см.
В ромбе все стороны равны А также по условию диагональ равна стороне, значит треугольник, образованный сторонами и диагональю равносторонний, значит все углы по 60 Т.к диагонали ромба пересекаются под прямым углом, получаются 4 равных прямоугольных треугольника, а у одного из них один из углов 60, значит 2-ой угол прямоугольного треугольника = 30, а значит углы между диагоналями и сторонами ромба равны 30;30;60;60;30;30;60;60 (по часовой стрелке сверху) Диагональ ромба делит угол пополам - это свойство ромба, значит углы ромба равны 60;120;60;120 Проверка: 120+120+60+60=360 А сумма углов четырёхугольника = 360, значит решение верно!
P = 80 см; BH ┴ AD, BH = 7,5 см; угол A = 30°.
Найти: AB, BC, CD, AD.
Решение.
ΔABH — прямоугольный, т.к. по условию BH ┴ AD (угол ABH = 90°)
BH = 0,5AB, т.к. по условию угол A = 30°, а в прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы.
AB = 2BH = 2 * 7,5 см = 15см
AB = CD, BC = AD (по определению параллелограмма)
CD = AB = 15 см
P = 2AB + 2BC
2BC = 80 см - 2 * 15см = 50 см
AD = BC = 50 см : 2 = 25 см
ответ: AB = CD = 15 см, BC = AD = 25 см.
А также по условию диагональ равна стороне, значит треугольник, образованный сторонами и диагональю равносторонний, значит все углы по 60
Т.к диагонали ромба пересекаются под прямым углом, получаются 4 равных прямоугольных треугольника, а у одного из них один из углов 60, значит 2-ой угол прямоугольного треугольника = 30, а значит углы между диагоналями и сторонами ромба равны 30;30;60;60;30;30;60;60 (по часовой стрелке сверху)
Диагональ ромба делит угол пополам - это свойство ромба, значит углы ромба равны 60;120;60;120
Проверка: 120+120+60+60=360
А сумма углов четырёхугольника = 360, значит решение верно!