1. В треугольнике АВС АВ>ВС>АС. Найдите угол А, угол В и угол С,
если известно, что один из углов треугольника равен 120 0 , а другой 40 0 .
2. В треугольнике АВС угол А равен 50 0 , а угол В в 12 раз меньше угла С.
Найдите углы В и С.
3. В треугольнике АВС угол С равен 90 0 , а угол В равен 35 0 , CD – высота.
Найдите углы треугольника ACD.
4 * . Периметр равнобедренного треугольника равен 45 см, а одна из его
сторон больше другой на 12 см. Найдите стороны треугольника.
Объяснение:
НОД (216; 480) = 24.
Разложим на простые множители 216
216 = 2 • 2 • 2 • 3 • 3 • 3
Разложим на простые множители 480
480 = 2 • 2 • 2 • 2 • 2 • 3 • 5
Выберем одинаковые простые множители в обоих числах.
2 , 2 , 2 , 3
Находим произведение одинаковых простых множителей и записываем ответ
НОД (216; 480) = 2 • 2 • 2 • 3 = 24
НОК (216, 480) = 4320
Разложим на простые множители 216
216 = 2 • 2 • 2 • 3 • 3 • 3
Разложим на простые множители 480
480 = 2 • 2 • 2 • 2 • 2 • 3 • 5
Выберем в разложении меньшего числа (216) множители, которые не вошли в разложение
3 , 3
Добавим эти множители в разложение бóльшего числа
2 , 2 , 2 , 2 , 2 , 3 , 5 , 3 , 3
Полученное произведение запишем в ответ.
НОК (216, 480) = 2 • 2 • 2 • 2 • 2 • 3 • 5 • 3 • 3 = 4320
Объяснение:
Внешний угол смежен с внутренним углом, с которым у него общая вершина. Сумма смежных углов равна 180°
Тогда угол КВС=180°–угол САВ=180°–32°=148°
RB – биссектриса угла КВС по условию.
Следовательно угол КВR=угол КВС÷2=148°÷2=74°
Так как RB//AC по условию, то угол ВАС =угол KBR=74° как соответственные углы при параллельных прямых RB u AC и секущей АК.
Так как в задании не указана последовательность углов А и С, найду второй угол.
Сумма углов в любом треугольнике равна 180°
Тогда угол ВСА=180°–угол ВАС–угол СВА=180°–74°–32°=74°.
Получилось что углы А и С равны, тогда неважно в какой последовательности они записаны.
ответ: угол САВ=74°