1. в треугольнике авс ав=вс, ас=5, сн-высота, ан=3. найдите синус угла асв. 2. в треугольнике авс угол с равен 90, ав=4 корня из 5, вс=8. найдите тангенс внешнего угла при вершине а
Решение:
Для начала нам понадобятся некоторые знания о связи высоты треугольника и его сторон.
Замечание: В треугольнике abc, где m - высота, а b и c - стороны, справедливо следующее соотношение:
b² = a² + m²
Теперь приступим к решению задачи.
1. Сначала построим точку m как основание высоты, которая будет серединой стороны ac.
Так как ав=вс, то м - середина отрезка ac.
2. Из условия задачи у нас уже есть сторона ас=5 и сторона ан=3. Используем соотношение высоты и сторон треугольника.
В нашем случае с = 5, а = 3.
Подставляем значения и находим сторону с, используя следующее выражение:
с² = а² + м²
5² = 3² + м²
25 = 9 + м²
м² = 25 - 9
м² = 16
м = √16
м = 4
Теперь у нас есть совершенно треугольник амс, где aм = мс.
У этого треугольника мы можем найти синус угла асм с помощью отношения сторон.
3. Синус угла асм можно найти следующим образом:
sin угла асм = противолежащая сторона / гипотенуза
Так как в треугольнике амс ам=мс (равные стороны), то гипотенуза - это сторона ac, которая равна 5.
А противолежащая сторона - это сторона ам, которая равна 4.
Подставляем значения и находим синус угла асм:
sin угла асм = 4 / 5
Таким образом, синус угла асм равен 4/5.
Надеюсь, это решение будет понятным для вас. Если хотите, чтобы я пошагово рассмотрел следующую задачу, пожалуйста, дайте знать.
tgA=BC/AC=BC/корень(AB^2-BC^2)=8/4=2
Давайте рассмотрим первую задачу.
1. Дано:
авс - треугольник, где ав=вс (равные стороны), ас=5, сн-высота, ан=3.
Найти:
синус угла асв.
Решение:
Для начала нам понадобятся некоторые знания о связи высоты треугольника и его сторон.
Замечание: В треугольнике abc, где m - высота, а b и c - стороны, справедливо следующее соотношение:
b² = a² + m²
Теперь приступим к решению задачи.
1. Сначала построим точку m как основание высоты, которая будет серединой стороны ac.
Так как ав=вс, то м - середина отрезка ac.
2. Из условия задачи у нас уже есть сторона ас=5 и сторона ан=3. Используем соотношение высоты и сторон треугольника.
В нашем случае с = 5, а = 3.
Подставляем значения и находим сторону с, используя следующее выражение:
с² = а² + м²
5² = 3² + м²
25 = 9 + м²
м² = 25 - 9
м² = 16
м = √16
м = 4
Теперь у нас есть совершенно треугольник амс, где aм = мс.
У этого треугольника мы можем найти синус угла асм с помощью отношения сторон.
3. Синус угла асм можно найти следующим образом:
sin угла асм = противолежащая сторона / гипотенуза
Так как в треугольнике амс ам=мс (равные стороны), то гипотенуза - это сторона ac, которая равна 5.
А противолежащая сторона - это сторона ам, которая равна 4.
Подставляем значения и находим синус угла асм:
sin угла асм = 4 / 5
Таким образом, синус угла асм равен 4/5.
Надеюсь, это решение будет понятным для вас. Если хотите, чтобы я пошагово рассмотрел следующую задачу, пожалуйста, дайте знать.