BC = AD = 12; АB = CD - противолежащие стороны параллелограмма равны.
Найдем длины сторон AB и CD:
Углы ВAЕ и EAD равны, т.к. АЕ – биссектриса угла А; углы BЕА и ЕАD равны как внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей АЕ. Значит, будут равны углы ВЕА и ВАЕ и поэтому треугольник АВЕ будет равнобедренным. В равнобедренном треугольнике боковые стороны равны, значит АВ = ВЕ.
Пусть СЕ рано х см, тогда ВЕ – (3х) см. Их сумма равна (х + 3х) см или 12 см.
Объяснение:
Сумму внутренних углов выпуклого n-угольника можно вычислить по формуле:
S=180\textdegree(n-2)S=180\textdegree(n−2)
1. Сумма всех внутренних углов выпуклого правильного многоугольника равна 1060°:
\begin{gathered}1060^\circ=180^\circ(n-2)\ \ \ \ |:180^\circn-2=5\dfrac89;\ \ \ \ \ n=7\dfrac89\end{gathered}
1060
∘
=180
∘
(n−2) ∣:180
∘
n−2=5
9
8
; n=7
9
8
Так как количество вершин многоугольника не может быть числом дробным, то такой многоугольник не существует, число сторон 0.
2. Сумма всех внутренних углов выпуклого правильного многоугольника равна 900°:
\begin{gathered}900^\circ=180^\circ(n-2)\ \ \ \ |:180^\circn-2=5;\ \ \ \ \boldsymbol{n=7}\end{gathered}
900
∘
=180
∘
(n−2) ∣:180
∘
n−2=5; n=7
Многоугольник существует, число сторон 7.
P ABCD = AB + BC + CD + AD
BC = AD = 12; АB = CD - противолежащие стороны параллелограмма равны.
Найдем длины сторон AB и CD:
Углы ВAЕ и EAD равны, т.к. АЕ – биссектриса угла А; углы BЕА и ЕАD равны как внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей АЕ. Значит, будут равны углы ВЕА и ВАЕ и поэтому треугольник АВЕ будет равнобедренным. В равнобедренном треугольнике боковые стороны равны, значит АВ = ВЕ.
Пусть СЕ рано х см, тогда ВЕ – (3х) см. Их сумма равна (х + 3х) см или 12 см.
х + 3х = 12;
4x =12;
x = 12 : 4;
x = 3 (см) – СЕ;
3х = 3 * 3 = 9 (см) – ВЕ.
АВ = СD = 9 cм.
P ABCD = 9 + 12 + 9 + 12 = 42 (cм).
ответ. 42 см.