1. В треугольнике СDE точка м лежит на стороне CE, причем угол
CMD острый.
Докажите, что DE > DM.
2. Найдите углы треугольника ABC, если угол А на 60° меньше угла в
ив 2 раза меньше угла С.
3. В прямоугольном треугольнике ABC (ZC= 90°) биссектрисы CD и
AE пересекаются в точке 0. Z AOC = 105°.
Найдите острые углы треугольника ABC.
4*. Один из внешних углов треугольника в два раза больше другого
внешнего угла.
Найдите разность между этими внешними углами, если внутренний угол
треугольника, не смежный с указанными внешними углами, равен
1) прямые МР и NK могут быть параллельны, т.к. углы PMN и RNM являются односторонними (в сумме дают 180градусов) и раз уж они равны, значит по 90 градусов каждый => МР II NK
так же они могут пересекаться (точка Р накладывается на точку К). И при условии, что МР=NK получаем равнобедненный треугольник с основанием МN. А углы при основании такого треугольника равны.
ответ: 5)Пересекаются или параллельны
2)
пусть один из односторонних углов х (тупой), другой y(острый), тогда:
х-y=65
x+y=180
y=180-х
х-(180-х)=65
2х=65+180=245
х=122,5градуса
y=180-122,5=57,5градусов
y - это один из острых накрест лежащих углов (накрест лежащие углы равны) =>
2y=57,5*2=115градусов
ответ: 1)115 градусов
1) прямые МР и NK могут быть параллельны, т.к. углы PMN и RNM являются односторонними (в сумме дают 180градусов) и раз уж они равны, значит по 90 градусов каждый => МР II NK
так же они могут пересекаться (точка Р накладывается на точку К). И при условии, что МР=NK получаем равнобедненный треугольник с основанием МN. А углы при основании такого треугольника равны.
ответ: 5)Пересекаются или параллельны
2)
пусть один из односторонних углов х (тупой), другой y(острый), тогда:
х-y=65
x+y=180
y=180-х
х-(180-х)=65
2х=65+180=245
х=122,5градуса
y=180-122,5=57,5градусов
y - это один из острых накрест лежащих углов (накрест лежащие углы равны) =>
2y=57,5*2=115градусов