продливаем отрезок DM до пересечения со стороной параллелограмма ВС. Пусть точка пересечения будет Е. Тогда треугольники АМD и ВМЕ равны по второму признаку равенства теугольников (по стороне и прилежащим к ней углам - по условию сторона МВ равна МА,углы ЕМВ и DMA - вертикальные,а угол МDA равен углу MEВ как вертикальные углы при параллельных прямых ЕС и АД.Следовательно, сторона АD равна стороне ЕВ,а так как в параллелограмме противолежащие стороны равны,то получаем равенство АД=ВС=ЕВ )
Обозначим точку пересечения отрезков ДМ и АС как К. Тогда треугольники АКД и СКЕ - подобны по первому признаку подобия (по двум углам - углы АКД и СКЕ - вертикальные,а уголы АДК и КЕС - вертикальные ),следовательно,если треугольники подобны,то можем записать соотношение сторон:
АК/CK=AD/EC,так как ЕС =ЕВ+ВС,получим
АК/CK=AD/(ЕВ+ВС) (1)
Пусть сторона АД будет х, а отрезок АК будетт у,тогда запишем равенство АД=ВС=ЕВ=х,а КС =18-у (по условию задачи).
Теперь запишем уравнение (1) в таком виде
у /(18-у) = х/2х,так как х больше ноля (длина отрезка не может быть отрицательной),то правую часть уравнения можн сократить на х.
ну если есть длины всех сторон то находим синус нужного вам угла, потом вспоминаем свойства корень(sin^2x+cos^2x)=1 и исходя из этого делаем вывод что 1-sin^2x и есть искомый косинус
1)
Это тупой угол, тангенс которого равен -3. 2)Необходимо найти его стороны KL, ML и KM. Для этого можно воспользоваться теоремой Пифагора и найти каждую из сторон построив для них отдельные прямоугольные треугольники, сторонами которых будут являться одна из сторон треугольника KLM и перпендикуляры опущенные на координатные оси, третьей вершиной таких треугольников будет точка пересечения этих перпендикуляров. Так искомая сторона окажется гипотенузой в этих отдельных треугольниках, а катеты определяются по координатным осям, так как они им параллельны. Если непонятно. Воспользуйтесь этой формулой: d = корень из ( (x2-x1)^2 + (y2-y1)^2 ), где d - искомая сторона треугольника KLM, (x1;y1) и (x2;y2) - координаты ее концов; ^2 - в квадрате. Отсюда: KM= корень из (7^2 + 1^2) = корень из (50) = 5 * корень из (2). KL= корень из (3^2 + 3^2) = корень из (18) = 3 * корень из (2). ML= корень из (4^2 + 4^2) = корень из (32) = 4 * корень из (2).
косинус L = косинус 90 градусов = 0. косинус М = ML/KM = 4/5 = 0,8. косинус K = KL/KM = 3/5 = 0,6.
H - ?Следуя логике это высота. Высота опущеная с вершин М и K будет совпадать со сторонами треугодьника ML и KL, а угол Н с углами М и К соответсвенно. Высота опущенная с вершины L находится иначе. Она образует два треугольника KLH и MLH. Можно доказать через подобие треугольников, что отношение сторон или косинус угла HLM равен косинусу угла К, а косинус угла HLК равен косинусу угла М. Но можно сделать и иначе - составив уравнения для общей стороны треугольников LH: Для треугольника KLH: LH^2 = KL^2 - KH^2 Для треугольника MLH: LH^2 = ML^2 - MH^2 Получили систему уравнений. Отняв от первого уравнения второе получим: KL^2 - ML^2 - KH^2 + -MH^2 = 0. Подставляем в полученное уравнение МН = КМ - КН и выразив КН получаем: КН = ( KL^2 - ML^2 +КМ^2 ) / ( 2 * KM) = ( 9/5 ) * корень из двух. Находим LН и КМ подставляя полученое значение КН в первою и второе уравнение системы соответственно: LН = (12/5) * корень из 2; - это высота треугольника KLM опущеная с вершины L МН = (16/5) * корень из 2. Находим косинусы углов образованых высотой из треугольников KLH и MLH: косинус HLM = LH/LM = 3/5 = 0,6. косинус HLK = LH/KL = 4/5 = 0,8. вопрос 1) вектора ОА(-1;3)...|OA|=V10 ОХ(1;0)...|OX|=1
делит на части длиной 6 и 12 см
нужны дополнительные построения
продливаем отрезок DM до пересечения со стороной параллелограмма ВС. Пусть точка пересечения будет Е. Тогда треугольники АМD и ВМЕ равны по второму признаку равенства теугольников (по стороне и прилежащим к ней углам - по условию сторона МВ равна МА,углы ЕМВ и DMA - вертикальные,а угол МDA равен углу MEВ как вертикальные углы при параллельных прямых ЕС и АД.Следовательно, сторона АD равна стороне ЕВ,а так как в параллелограмме противолежащие стороны равны,то получаем равенство АД=ВС=ЕВ )
Обозначим точку пересечения отрезков ДМ и АС как К. Тогда треугольники АКД и СКЕ - подобны по первому признаку подобия (по двум углам - углы АКД и СКЕ - вертикальные,а уголы АДК и КЕС - вертикальные ),следовательно,если треугольники подобны,то можем записать соотношение сторон:
АК/CK=AD/EC,так как ЕС =ЕВ+ВС,получим
АК/CK=AD/(ЕВ+ВС) (1)
Пусть сторона АД будет х, а отрезок АК будетт у,тогда запишем равенство АД=ВС=ЕВ=х,а КС =18-у (по условию задачи).
Теперь запишем уравнение (1) в таком виде
у /(18-у) = х/2х,так как х больше ноля (длина отрезка не может быть отрицательной),то правую часть уравнения можн сократить на х.
получаем
у /(18-у) = 1/2
у=6
АК=6, КС =18-у=18-6=12
2)
ну если есть длины всех сторон то находим синус нужного вам угла, потом вспоминаем свойства корень(sin^2x+cos^2x)=1 и исходя из этого делаем вывод что 1-sin^2x и есть искомый косинус1)
Это тупой угол, тангенс которого равен -3. 2)Необходимо найти его стороны KL, ML и KM. Для этого можно воспользоваться теоремой Пифагора и найти каждую из сторон построив для них отдельные прямоугольные треугольники, сторонами которых будут являться одна из сторон треугольника KLM и перпендикуляры опущенные на координатные оси, третьей вершиной таких треугольников будет точка пересечения этих перпендикуляров. Так искомая сторона окажется гипотенузой в этих отдельных треугольниках, а катеты определяются по координатным осям, так как они им параллельны. Если непонятно. Воспользуйтесь этой формулой:d = корень из ( (x2-x1)^2 + (y2-y1)^2 ),
где d - искомая сторона треугольника KLM, (x1;y1) и (x2;y2) - координаты ее концов; ^2 - в квадрате.
Отсюда:
KM= корень из (7^2 + 1^2) = корень из (50) = 5 * корень из (2).
KL= корень из (3^2 + 3^2) = корень из (18) = 3 * корень из (2).
ML= корень из (4^2 + 4^2) = корень из (32) = 4 * корень из (2).
косинус L = косинус 90 градусов = 0.
косинус М = ML/KM = 4/5 = 0,8.
косинус K = KL/KM = 3/5 = 0,6.
H - ?Следуя логике это высота. Высота опущеная с вершин М и K будет совпадать со сторонами треугодьника ML и KL, а угол Н с углами М и К соответсвенно.
Высота опущенная с вершины L находится иначе. Она образует два треугольника KLH и MLH. Можно доказать через подобие треугольников, что отношение сторон или косинус угла HLM равен косинусу угла К, а косинус угла HLК равен косинусу угла М. Но можно сделать и иначе - составив уравнения для общей стороны треугольников LH:
Для треугольника KLH: LH^2 = KL^2 - KH^2
Для треугольника MLH: LH^2 = ML^2 - MH^2
Получили систему уравнений. Отняв от первого уравнения второе получим: KL^2 - ML^2 - KH^2 + -MH^2 = 0. Подставляем в полученное уравнение МН = КМ - КН и выразив КН получаем:
КН = ( KL^2 - ML^2 +КМ^2 ) / ( 2 * KM) = ( 9/5 ) * корень из двух.
Находим LН и КМ подставляя полученое значение КН в первою и второе уравнение системы соответственно:
LН = (12/5) * корень из 2; - это высота треугольника KLM опущеная с вершины L
МН = (16/5) * корень из 2.
Находим косинусы углов образованых высотой из треугольников KLH и MLH:
косинус HLM = LH/LM = 3/5 = 0,6.
косинус HLK = LH/KL = 4/5 = 0,8. вопрос 1) вектора
ОА(-1;3)...|OA|=V10
ОХ(1;0)...|OX|=1
cos a=-1/V10
cos a=-0,31622
a=108 гр 26 мин