1) В восьмиугольной пирамиде основанием служит прямоугольный треугольник с катетами - 10 см и 4 см, боковое ребро выходящее из прямого угла = 6 см. Найти объем пирамиды.
2) В правильной четырехугольной пирамиде боковое ребро = 16 см, апофема = 6 см. Найти объем пирамиды.
ответ: угол А=52°; угол В=65°
Объяснение: Для решения этой задачи найдем сначала внутренний угол С: сумма внутреннего и внешнего угла в треугольнике равна 180°. Значит внутренний угол А = 180-117=63°. Сумма углов в треугольнике равна 180° Найдем сколько градусов будут угол А и В вместе: 180-63=117°. По условию угол А относится к углу В как 4:5. Примем угол А за 4 части, а угол В за 5 частей. 4+5=9 частей составляет сумма угла А и В. Найдем сколько составляет 1 часть: нужно 117:9=13°. Находим угол А = 13х4=52°. Находим угол В = 13х5=65°
Sбок.= 24+24+40+40 = 128 см².
Объяснение:
Sбок.=SASB + SBSC + SDSC + SASD.
1. Грань ASB — прямоугольный треугольник, SASB = AB⋅SB/2= 8⋅6/2 = 24 см².
2. Грани BSC и ASB — равные треугольники, SBSC = 24 см².
3. Грань DSC — прямоугольный треугольник, это доказывается теоремой о трёх перпендикулярах.
Площадь ΔDSC равна S= DC⋅SC/2,
SC вычисляем по теореме Пифагора: SC= √8²+6² = 10 см;
SDSC = 8⋅10/2 = 40 см².
4. Грань ASD — прямоугольный треугольник, по теореме о трёх перпендикулярах.
SASD = SDSC = 40 см².
ответ: Sбок.= 24+24+40+40 = 128 см².