1 вариант
1. Найти площадь боковой и площадь полной поверхности конуса, радиус основания которого равен 2, а образующая равна 5.
2. Найти площадь боковой и площадь полной поверхности цилиндра, радиус основания которого равен 5, а образующая равна 10.
3. Найти площадь боковой и площадь полной поверхности конуса, радиус основания которого равен 1, а высота равна 2.
4. Найти площадь боковой и площадь полной поверхности цилиндра, диагональ осевого сечения которого равен 8, а образующая равна 5.
2 вариант
1. Найти площадь боковой и площадь полной поверхности конуса, радиус основания которого равен 4, а образующая равна 13.
2. Найти площадь боковой и площадь полной поверхности цилиндра, радиус основания которого равен 3, а образующая равна 8.
3. Найти площадь боковой и площадь полной поверхности конуса, радиус основания которого равен 3, а образующая равна 5.
4. Найти площадь боковой и площадь полной поверхности цилиндра, диагональ осевого сечения которого равен 5, а образующая равна 3.
выполнить задачи № 2 и №4 двух вариантов заранее
В основании правильной четыреухгольной пирамиды SABCD лежит квадрат ABCD, боковые грани — равные треугольники с общей вершиной S. Высота пирамиды Н опускается в центр пересечения O диагоналей квадрата основания из вершины пирамиды S.
Угол между боковой гранью и плоскостью основания пирамиды является углом между высотой h(бок) боковой грани (перпендикуляром SM, опущенным из вершины S пирамиды к основанию AB равнобедренного треугольника боковой грани) и плоскостью основания.
В прямоугольном треугольнике SOM, SM - гипотенуза, SO=H = катет, противолежащий углу 30 градусов, MO - катет, прилежащий углу 30 градусов. МО = половине стороны квадрата основания пирамиды.
МО = AB/2 = 6/2 = 3 см
Катет, противолежащий углу 30 градусов, равен половине гипотенузы⇒ SM = 2H
по теореме Пифагора:
H² + MO² = (2H)²
H² + 9 = 4H²
3H² = 9
H² = 3
H = √3 см
В прямоугольном треугольнике SOA, боковое ребро пирамиды SA - гипотенуза, SO=H=√3 - катет, противолежащий искомому углу, AO - катет, прилежащий искомому углу. AO= половине диагонали квадрата основания пирамиды.
AO = AB*√2 / 2 = 6 * √2 / 2 = 3√2 см
Тангенс искомого угла - отношение противолежащего катета к прилежащему.
√3 / 3√2 = 1 / √6 ≈ 0.4082, что приблизительно соответствует углу 22°12' (по таблице Брадиса)
Угол между боковым ребром и плоскостью основания пирамиды приблизительно равен 22 градуса 12 минут.
Объем правильной четырехугольной пирамиды равен:V = 1/3 * H * a²
V = 1/3 * √3 * 6² = 12√3 см²