1 вариант
1.Один из острых углов прямоугольного треугольника в 2 раза больше другого. Найдите острые углы этого треугольника.
2.Один из углов прямоугольного треугольника на 18○ больше другого. Найти величины всех углов треугольника.
3.Найти углы равнобедренного прямоугольного треугольника .
4. В равнобедренном треугольнике один из катетов 12 см. Чему равен другой катет?
5.В треугольнике АВС угол С равен 90○,угол В равен 60○,СВ =6 см.
Чему равна сторона АВ?
6. В треугольнике АВС угол С равен 90○ , АВ= 15см ,СВ=7,5см .
Чему равен угол В?
Так как прямые па аралелльны , то четырёхугольники LMXA , MNBZ , MWCY параллелограммы .
Значит AL=XM , MY=WC , MX=BN .
Полученные три треугольника подобны между собой , получаем
(LN/MX)^2 = (27/12)
(ZW/MY)^2 = (3/12)
(MZ/LN)^2 = (3/27)
LN/MX=3/2
ZW/MY=1/2
MZ/LN=1/3
Откуда LN+AL = LN+MX = 5MX/2
Из подобия треугольников NML и ANY получаем
(LN/(LN+AL))^2 = 27/(27+S(ALMX) + 12)
Или 9/25 = 27/(39+S(ALMX))
Откуда S(ALMX) = 36
Аналогично и с двумя другими S(MNBZ)=18 , S(MYCW) = 12
Значит
S(ABC) = 27+12+3+36+18+12 = 108
2) Проведём из угла при основании высоту к боковой стороне. По свойству равнобедренного треугольника она будет и медианой. Рассмотрим полученный прямоугольный треугольник. По свойству прямоугольного треугольника, катет, лежащий против угла в 30 градусов равен половине гипотенузы. По теореме Пифагора имеем:
х²=(½х)²+2²
х²-¼х²=4
¾х²=4
х²=4×4/3
х=4/кореньиз3
Боковая сторона равна 4/кореньиз3, а высота к ней 2/кореньиз3.
3) Площадь треугольника S=½a×h=½×2/кореньиз3 × 4/кореньиз3 =½×8/3=4/3 (см²)
2. Пусть одна часть будет а, тогда одна сторона будет 5а, другая 7а. Р=2×(5а+7а)=144. 2×12а=144
24а=144
а=6
Тогда одна сторона равна 6×5=30, а другая 6×7=42. Тогда S=30×42=1260
3. S=a×h
12×На=36
На=3 (см)
9×Нb=36
Нb=4