1. вариант гипотенуза прямоугольного треугольника на один метр больше одного из катетов, а второй катед 5 метров. найти периметр треугольника. (нужен полный ответ, ! ) 2. вариант один из катедов прямоугольного треугольника на 2 см, меньше гипотенузы. а второй катед = 8. найти треугольник.
.
Подставив значения сторон, получаем длины медиан:
a b c
5 6 8
ма мв мс
6.61438 5.95819 3.80789.
Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины.
Деление медиан точкой пересечения:
ма мв мс
АО ОД ВО ОЕ СО ОК
4.40959 2.20479 3.972125 1.98606 2.5386 1.2693.
AS - боковое ребро =13.
SH - апофема = 10.
АН - половина стороны (так как в правильной пирамиде боковые грани - равнобедренные треугольники), по Пифагору равна √(AS²-SH²) или
АН=√(169-100)=√69.
АВ=2√69.
АВС - правильный треугольник, в котором СН - высота, медиана и биссектриса. СН=(√3/2)*АВ (формула).
СН=(√3/2)*2√69=3√23.
НО=(1/3)*СН (свойство медианы) или
НО=√23.
Из прямоугольного треугольника SOH по Пифагору:
SO=√(SH²-HO²) или SO=√(100-23) =√77.
ответ: SO=√77.