Дано :
параллелограмм NPKA
<ANK = 45°
<KNP = 65°
Найти:
<А, <К, <Р, <N, <NKA, <NKP = ?
<N = <ANK + <KNP = 45° + 65° = 110°
<N = <K = 110° (св-во параллелограмма - противоположные углы равны)
<А = 180° - <К = 180° - 110° = 70° (свойство параллелограмма - углы, прилежащие к любой стороне, в сумме равны 180°)
<Р = <А = 70° (св-во параллелограмма - противоположные углы равны)
<NKA = <KNP = 65° (н.л. при NP//AK и секущей NK)
<NKP = <K - <NKA = 110° - 65° = 45°
ответ: <А = <Р = 70° ; <К = <N = 110° ; <NKA = 65° ; <NKP = 45°
Дано :
параллелограмм NPKA
<ANK = 45°
<KNP = 65°
Найти:
<А, <К, <Р, <N, <NKA, <NKP = ?
<N = <ANK + <KNP = 45° + 65° = 110°
<N = <K = 110° (св-во параллелограмма - противоположные углы равны)
<А = 180° - <К = 180° - 110° = 70° (свойство параллелограмма - углы, прилежащие к любой стороне, в сумме равны 180°)
<Р = <А = 70° (св-во параллелограмма - противоположные углы равны)
<NKA = <KNP = 65° (н.л. при NP//AK и секущей NK)
<NKP = <K - <NKA = 110° - 65° = 45°
ответ: <А = <Р = 70° ; <К = <N = 110° ; <NKA = 65° ; <NKP = 45°
Треугольник АВD - прямоугольный
угол АВD = 90° - 60° = 30° (теорема об острых углах прямоугольного треугольника)
АВ = 2 * АD = 2 * 3 = 6 (теорема о катете, лежащим против угла в 30°)
По теореме Пифагора:
ВD^2 = АВ^2 - АD^2 = 36 - 9 = 27
BD = корень из 27
Рассмотрим треугольник DBC
Треугольник DBC - прямоугольный
угол DBC = 90° - 45° = 45° (теорема об острых углах прямоугольного треугольника)
угол DCB = 45° (по условию)
Из двух предыдущих следует, что треугольник DBC - равнобедренный => DC = BD = корень из 27
По теореме Пифагора:
ВС^2 = DB^2 + DC^2 = 27 + 27 = 54
BC = корень из 54