1) Вполнит, умножение: а) 4x(х + 3x - 2),
б) - За(а + бас + 50),
в) 4x' (ах” + 2а'x - а”),
2) Упростить выражение:
а) 5х(х - 4) - 2(х + 3х),
б) За(2а + а”) - 4a(a - Ta),
в) х(х + 2y) - y( 3х - 4у),
3) Решить уравнение:
а) 2x(3x-4) - 3х2х + 5) 7,
б) 4х +x+1 = х2 + х),
в) 3х(х + 1) -2х(5х + 3) = 7x(2 - x) +34.
ML II CD как средняя линия BCD;
KL II AB как средняя линия ABD;
KN II CD как средняя линия ACD;
Поэтому противоположные стороны четырехугольника KLMN параллельны, то есть это параллелограмм.
По условию его диагонали KM и LN перпендикулярны, то есть это - ромб, все его стороны равны.
Так же по условию KN = LN, то есть треугольник KNL равносторонний.
Следовательно ∠NKL = 60°;
Так как стороны этого угла параллельны сторонам искомого угла (то есть KL II AB; KN II CD), то прямые AB и CD тоже образуют угол 60°.
1
Объяснение:
Для решения данной задачи примем катеты за неизвестные. Пусть они равны a и b соответственно. Тогда согласно условиям задачи составим систему уравнений и решим ее, вычтя из первого уравнения второе:
система выражений a в степени 2 плюс b в степени 2 =49,(a минус 4) в степени 2 плюс b в степени 2 =25 конец системы . равносильно система выражений a в степени 2 плюс b в степени 2 =49, 8a=40 конец системы . \underset{b больше 0}{\mathop{ равносильно }} система выражений a=5,b=2 корень из 6 . конец системы .
Таким образом, первоначально горка была высотой 5 м и длиной 2 корень из 6 \approx 4,9 м. После уменьшения горки, ее параметры стали равны 1 м и 4,9 м соответственно.