Пусть O — центр вписанной окружности треугольника ABC со сторонами AC = 1, AB = 2 и углом CAB, равным 60o. По теореме косинусов находим, что BC = $ \sqrt{3}$. Значит, треугольник ABC — прямоугольный, $ \angle$ACB = 90o, $ \angle$ABC = 30o. Поскольку O — точка пересечения биссектрис треугольника ABC, то
Рассмотрим произвольный треугольник АВС и докажем, что
∠A+∠B+∠C= 180°.
Проведём через вершину В прямую а, параллельную стороне АС (рис. 125, а). Углы 1 и 4 являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 — накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому
∠4 = ∠1, ∠5 = ∠3. (1)
Очевидно, сумма углов 4, 2 и 5 равна развёрнутому углу с вершиной В, т. е. ∠4 + ∠2 + ∠5 = 180°. Отсюда, учитывая равенства (1), получаем: ∠1 + ∠2 + ∠3 = 180°, или ∠A + ∠B + ∠C = 180°. Теорема доказана.
Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника. Докажем, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
Обратимся к рисунку 125, б, на котором угол 4 — внешний угол, смежный с углом 3 данного треугольника. Так как ∠4 + ∠3 = 180°, а по теореме о сумме углов треугольника (∠1+ ∠2) + ∠3 = 180°, то ∠4 = ∠1 + ∠2, что и требовалось доказать.
1
Объяснение:
Пусть O — центр вписанной окружности треугольника ABC со сторонами AC = 1, AB = 2 и углом CAB, равным 60o. По теореме косинусов находим, что BC = $ \sqrt{3}$. Значит, треугольник ABC — прямоугольный, $ \angle$ACB = 90o, $ \angle$ABC = 30o. Поскольку O — точка пересечения биссектрис треугольника ABC, то
$\displaystyle \angle$BOC = 90o + $\displaystyle {\textstyle\frac{1}{2}}$$\displaystyle \angle$CAB = 90o + 30o = 120o.
Если R — искомый радиус, то
R = $\displaystyle {\frac{BC}{2\sin \angle BOC}}$ = $\displaystyle {\frac{\sqrt{3}}{2\sin 120^{\circ}}}$ = 1.
Рассмотрим произвольный треугольник АВС и докажем, что
∠A+∠B+∠C= 180°.
Проведём через вершину В прямую а, параллельную стороне АС (рис. 125, а). Углы 1 и 4 являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 — накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому
∠4 = ∠1, ∠5 = ∠3. (1)
Очевидно, сумма углов 4, 2 и 5 равна развёрнутому углу с вершиной В, т. е. ∠4 + ∠2 + ∠5 = 180°. Отсюда, учитывая равенства (1), получаем: ∠1 + ∠2 + ∠3 = 180°, или ∠A + ∠B + ∠C = 180°. Теорема доказана.
Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника. Докажем, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
Обратимся к рисунку 125, б, на котором угол 4 — внешний угол, смежный с углом 3 данного треугольника. Так как ∠4 + ∠3 = 180°, а по теореме о сумме углов треугольника (∠1+ ∠2) + ∠3 = 180°, то ∠4 = ∠1 + ∠2, что и требовалось доказать.
Объяснение:
надеюсь удачи