1)вычислите косинус угла между векторами а-в и а+в, если а(1; 2; 1) и в(2; -1; 0).2)дано: |а|=2; |в|=3; угол между векторами а и в равен 120°.найдите cosф, ф-угол между векторами а+в и в3)найдите длину вектора а-в-с, если |а|=2, |в|=3, |с|=4, угол(а,в)=60°; угол(в,с)=90°; угол(а,с)=120°
А. Вычислите длинну отрезка мк
МК=корень((6-(-2))^2+(-2-4)^2)=10
Б. Посторойте отрезок м1,к1 симметричный отрезку мк относительно оси ординат
м1х=(6;2)симметричный м относительно оси х
k1х=(-2;-4)симметричный k относительно оси х
м1у=(-6;-2)симметричный м относительно оси у
k1у=(2;4)симметричный k относительно оси у
м1z=(-6;2)симметричный м относительно начала координат
k1z=(2;-4)симметричный k относительно начала координат
так как условие неполное - выберете сами нужную Вам пару точек, симметричных исходной паре
В окружность вписана равнобедренная трапеция так, что ее большее основание является диаметром окружности. Боковые стороны ее равны 4√2. средняя линия равна 14. Найти радиус окружности.
На рисунке, данном в приложении, АВСД - трапеция. АД - диааметр, АВ - боковая сторона трапеции.
Проведем диагональ ВД.
Угол АВД вписанный и опирается на диаметр, стягивающий дугу 180º. ⇒∠АВД=90º
Треугольник АВД - прямоугольный, его высота ВН делит диаметр АД на два отрезка. По свойству высоты равнобедренной трапеции ее высота, опущенная из тупого угла на большее основание, делит его на отрезки, меньший из которых равен полуразности оснований, а больший - их полусумме.
Полусумма оснований есть длина средней линии трапеции. ⇒
АД=АН+НД=АН+14
АВ - катет⊿ АВД. Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу
АВ²=АН•AД
32=АН•(14+АН)
32=14АН•(14+АН)⇒
АН²+14АН-32=0
Решив квадратное уравнение, получим два значения АН:
АН=2 и аН=-16 ( отрицательное значение не подходит) ⇒
АД=2+14=16 - это длина диаметра окружности.
R=D:2=8 (ед. длины)