Найдите площадь прямоугольного треугольника с гипотенузой 10 и углом 15°∘ ----- Площадь прямоугольного треугольника можно найти произведением его катетов, деленному на 2, можно и произведением сторон на синус угла между ними, деленному на 2. Пусть в ∆ АВС угол С=90°, угол В=15º, гипотенуза АВ=10 по условию Тогда ВС=АВ*cos15°= ≈10*0,9659=9,659 sin 15º=≈0,2588 S=10*9,659*0,2588 :2= ≈12,4997 (ед. площади) ----------- Это приближенное значение площади данного треугольника. Но можно найти точное. Для этого применим точное значение косинуса и синуса 15º ( оно есть в таблицах Этот вариант решения дан в приложении.
Прямий кут між катетами 3 та 4, тобто площа рахується як площа будь-якого прямокутного трикутника: 0.5*3*4=6
2. АВС - також трикутник Піфагора з кутами А=60, B=30, C=90 катетом 3 гіпотенузою 5, а отже іншим катетом 4. Отже площа АВС, рахується як в попередньому завдан і дорівнює 6
3. Уявімо ромб як 2 рівних і тимчасово рівнобедрених трикутника зі стороною a, та із звгальною підставою b, яка є діагоналлю рмба. Площа такого трикутника рахується за формулую:
-----
Площадь прямоугольного треугольника можно найти произведением его катетов, деленному на 2, можно и произведением сторон на синус угла между ними, деленному на 2.
Пусть в ∆ АВС угол С=90°, угол В=15º, гипотенуза АВ=10 по условию
Тогда ВС=АВ*cos15°= ≈10*0,9659=9,659
sin 15º=≈0,2588
S=10*9,659*0,2588 :2= ≈12,4997 (ед. площади)
-----------
Это приближенное значение площади данного треугольника. Но можно найти точное. Для этого применим точное значение косинуса и синуса 15º ( оно есть в таблицах
Этот вариант решения дан в приложении.
Объяснение:
1. Це клясичний трикутник Піфагора.
Прямий кут між катетами 3 та 4, тобто площа рахується як площа будь-якого прямокутного трикутника: 0.5*3*4=6
2. АВС - також трикутник Піфагора з кутами А=60, B=30, C=90 катетом 3 гіпотенузою 5, а отже іншим катетом 4. Отже площа АВС, рахується як в попередньому завдан і дорівнює 6
3. Уявімо ромб як 2 рівних і тимчасово рівнобедрених трикутника зі стороною a, та із звгальною підставою b, яка є діагоналлю рмба. Площа такого трикутника рахується за формулую:
Оскільки трикутників 2 - то S ромба = 37.9*2=75.8