1. Высота треугольника ABC провёденная к гипотинузе равна 6 см. Один из углов равен 30 градусам. Найдите элементы прямоугольного треугольника 2. Катет BC прямоугольного треугольника равен 12 см, найдите гипотенузу, второй катет и угол B если угол А равен 60 градусов.
Для удобства и быстроты всей писанины введём буквенные обозначения -сторона основания, - апофема, - высота основания. Эти три величины потребуются для всего вычисления.
МО=3, как катет, лежащий против угла в 30°
Для Δ-ка, лежащего в основании медианы, биссектрисы, высоты совпадают, а точка их пересечения О- является центром основания.
Далее вспоминаем свойство медиан Δ-ка:
Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Поэтому
Теперь находим :
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
Пусть АВС - данный равносторонний треугольник.
В любом равностороннем треугольнике углы его равны 60 градусов.
угол А=угол В=угол С=60 градусов.
Пусть АК и ВР - биссектриссы углов А и В соотвественно. Пусть биссектрисы пересекаются в точке Н .Тогда по определению биссектриссы.
угол BAH=угол ВАК=угол А:2=60градусов:2=30 градусов
угол ABH=угол АВР=2гол В:2=60градусов:2=30 градусов
Пусть биссектрисы пересекаются в точке Н
сумма углов трегуольника равна 180 градусов.
Поэтому угол AHB=180-30-30=120 градусов.
угол PHK=угол AHB=120 градусов (как вертикальные)
угол AHP=угол BHK=180-120=60 градусов (как смежные)
ответ: 60 градусов, 60 градусов, 120 градусов, 120 градусов