1,Запишите кратко: вектор b. 2,Запишите обозначение вектора с концом в точке М и началом в точке Р. 3,Какие вектора называются сонаправленными? 4,Изобразите два одинаково направленных, но не равных вектора. 5.Запишите в виде равенства, чему равна абсолютная величина нулевого вектора. 6.Что можно сказать о направлении двух равных векторов? 7.Изобразите вектор АВ и точку М. Отложите от точки М вектор , равный АВ. 8.Сформулируйте определение коллинеарных векторов. 9.Запишите определение равенства вектровов. 10.Изобразите вектор НС и точку Е. Отложите от точки Е вектор, равный НС.
a) tg∠MHC = 2
б) ∠(AM; (MBC)) = arccos(√10/4)
Объяснение:
a) Пусть Н - середина АВ, тогда СН - медиана и высота равнобедренного треугольника АВС,
СН ⊥ АВ.
СН - проекция МН на плоскость (АВС), значит
МН ⊥ АВ по теореме о трех перпендикулярах.
Тогда ∠МНС - линейный угол двугранного угла МАВС.
Из прямоугольного треугольника АСН:
СН = АС/2 = 2 см, как катет, лежащий против угла в 30°.
ΔМНС: ∠МСН = 90°,
tg∠MHC = MC / CH = 4 / 2 = 2
б) ∠ВАС = ∠ВСА = 30° как углы при основании равнобедренного треугольника АВС, ⇒
∠АСВ = 180° - 30° · 2 = 120°
Проведем АК⊥ВС, тогда ∠ АСК = 180° - 120° = 60° (по свойству смежных углов).
ΔАСК: ∠АКС = 90°
∠САК = 90° - 60° = 30°.
КС = 1/2 АС = 2 см как катет, лежащий против угла в 30°.
ΔСКМ: ∠МСК = 90°, по теореме Пифагора
МК = √(МС² + СК²) = √(16 + 4) = √20 = 2√5 см
СМ⊥(АВС) по условию, значит
СМ⊥АК,
АК⊥ВС по построению, ⇒ АК ⊥ (МВС), тогда
МК - проекция прямой АМ на плоскость (МВС) и значит
∠АМК = ∠(АМ; (МВС)) - искомый.
ΔАМС прямоугольный равнобедренный, значит его гипотенуза
АМ = СМ√2 = 4√2 см
ΔАМК: ∠АКМ = 90°
cos∠AMK = MK / AM = 2√5 / (4√2) = √10/4
∠AMK = arccos(√10/4)
Чертим окружность с центром О.
Через О проводим диаметр МН и перпендикулярно к нему радиус ОС, (как строить срединный перпендикуляр - ниже) .
Соединим С и Н отрезком и разделим его пополам:
Для этого из т.С и Н чертим полуокружности (можно тем же радиусом, что и первая) так, чтобы они пересеклись по обе стороны от СН.
Точки пересечения полуокружностей соединим прямой, которая пройдет через О, т.к. ∆ НОС - равнобедренный, а срединный перпендикуляр равнобедренного треугольника - биссектриса. Точку пересечения с окружностью обозначим А. Угол СОА=45°.
Ставим ножку циркуля в т. С ( или А - не имеет значения) и раствором циркуля, равным радиусу первой окружности, делаем на ней насечку. Отмечаем т.В. ∆ ВОС - правильный, так как ВО=СО=ВС=R. ⇒
Угол ВОС=60°.
Угол ВОА=60°+45°=105° Построение завершено.