1) Запишите множество Аеречисленнем земен гоn.
2) апишите количество алементов множества А.
3) Какие анементы не принадлежат множеству А?
При записи ненорауге обозначення
102 1. Как называют
1) множество чисе, употребляемых для енета вредметов)
2) множество точок на плоскости, равноудаленных точно
3) носеето фигур, образованных двумя лучами, выход
щимн на одной точки?
1022. Запишите множество перечислением его элементов, если
1) А множество двуначных чисел, оканчиваючихся нулем
) В множество правильных дробей со знаменателем в
3) с множество неправильных дробей е числителем 7.
1023. Вместо рамок поставьте соответствующие слова
множество», «бесконечное множество
Альпийская геосинклинальная (складчатая) область, самая молодая часть Средиземноморского геосинклинального пояса, включающая кайнозойские складчатые горные сооружения.
Охватывает складчатые системы Альп, Карпат, Балканского и Апеннинского полуостровов, Сицилии, прибрежных цепей Марокко, Алжира и Туниса, Пиренеев, Андалусских гор, Эгейского архипелага, остров Крит, полуострова Малая Азия, Крыма, Кавказа, Иранского нагорья и Гималаев — Евразия.
Развивалась на древнем, частью докембрийском — байкальском, частью палеозойском основании. Наиболее ранние геосинклинальные прогибы заложились в триасе — начале юры. Более поздние — в конце юры и в меловом периоде. В развитии области выделяются 2 этапа, разделённые во времени крупной фазой альпийской складчатости. Для первого (от триаса до конца палеогена) были характерны образования геосинклинальных прогибов, заполнение их осадочными и вулканическими толщами, складчатость и частные поднятия; для второго (конец палеогена, неоген, антропогеновый период), орогенного, или заключительного, типичны преобладающие поднятия, в результате которых оформились крупные горные системы (Гималаи, Б. Кавказ, Альпы и др.), а также межгорные впадины и краевые прогибы, заполненные неогеновыми и антропогеновыми (часто молассовыми и вулканическими) толщами.
В итоге огромных новейших поднятий горные хребты альпийского пояса достигли их совремённой высоты, превышающей местами 7 и даже 8 тыс. м.
Альпийская геосинклинальная (складчатая) область разделяется на ряд геосинклинальных систем, которые в процессе своего развития преобразовались в складчатые системы, различающиеся одна от другой особенностями строения и историей развития (например, системы Альп, Карпат, Крымско-Кавказская, Малого Кавказа и др.). Системы разделены большими или малыми значительными срединными массивами — остатками того основания, на котором развились геосинклинальные системы. Наиболее крупные срединные массивы: Сербско-Македонский, Родопский, Эгейский, Кыршехирский, Мендересский, Паннон-ский и др.
Альпийская геосинклинальная (складчатая) область выделена А. Д. Архангельским и Н. С. Шатским в 1933году.
Не три, а вообще центры всех окружностей, проходящих через две заданные точки, ТО ЕСТЬ ИМЕЮЩИХ В КАЧЕСТВЕ ХОРДЫ ЗАДАННЫЙ ОТРЕЗОК, лежат на прямой, перпендикулярной этому отрезку, и проходящей через его (отрезка) середину.
Тут все очень просто - центр любой такой окружности равноудален от концов отрезка. Поэтому он лежит на прямой, перпендикулярной этому отрезку, и проходящей через его (отрезка) середину. Это вобщем то все. :)
Примечание.
Это упражнение на "первоначальную логику" геометрии. То есть на умение применять простейшие теоремы и даже - аксиомы. В одно действие. Поэтому предлагаю вам сделать вот что - это понять материал.
Я так припоминаю, что в наше время уже где то в 5 классе вводили понятие "геометрическое место точек". Это просто множество точек, обладающее заданным свойством. Так, геометрическое место точек, равноудаленных от концов заданного отрезка - это перпендикулярная прямая через его середину. Легко показать, что а) все точки на этой прямой равноудалены от концов b) любая точка, НЕ принадлежащая этой прямой, НЕ равноудалена от концов заданного отрезка. Поскольку для доказательства достаточно знать один признак равенства треугольников, попробуйте сформулировать это сами :).
(Схема такая а) если точка лежит на перпендикулярной прямой, проходящей через середину отрезка, то оба прямоугольных треугольника (которые получаются после соединения точки с концами отрезка) равны по 2 катетам, и поэтому равны гипотенузы, а если b) НЕ принадлежит, тогда треугольники НЕ равны, и у треугольника с меньшим катетом - меньшая гипотенуза - это еще надо аккуратно объяснить, почему :) )