В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ПитерДина
ПитерДина
28.06.2021 05:20 •  Геометрия

1. Знайдіть координати середини відрізка CD, якщо C (4; -3), D (1; 6). 2.Знайдіть відстань від початку координат до точки С(-12; -5).
3.N – середини відрізка EF. Знайдіть координати точки F, якщо E (4; -1),
N (2; -3).
4.Знайдіть периметр трикутника АВС, якщо А (5; -2), В (5; 6), С (2; 2).
5.Точки К (-2; 1), L (0; 3), M (5; -1) – вершини паралелограма KLMN.
Знайдіть координати вершини N.

Показать ответ
Ответ:
pro63
pro63
22.01.2022 01:37
Если есть проблемы с отображением, смотрите снимок ответа, который приложен к нему.
====
Смотрите рисунок, приложенный к ответу.
Рассмотрим \triangle ABC. Из условия ясно, что он — прямоугольный (так как \angle C = 90^{\circ}). AB = 6 cm — гипотенуза, AC — искомый катет, tg \angle A = 2\sqrt{2}
Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть: tg \angle A = \frac{BC}{AC}
Отсюда: AC = \frac{BC}{tg \angle A}
Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
AB^2 = AC^2 + BC^2
Как мы выяснили чуть выше AC = \frac{BC}{tg \angle A}.
Заменяем и получаем:
AB^2 = (\frac{BC}{tg \angle A})^2 + BC^2
Немного поколдуем:
AB^2 = \frac{BC^2}{tg^2 \angle A} + BC^2 \\ 
AB^2 = \frac{BC^2 + BC^2 \cdot tg^2 \angle A}{tg^2 \angle A} \\ 
AB^2 = \frac{BC^2( 1 + tg^2 \angle A)}{tg^2 \angle A} \\
Отсюда найдем BC:
AB^2 = \frac{BC^2( 1 + tg^2 \angle A)}{tg^2 \angle A} \\ 
BC^2 = \frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A} \\ 
BC = \sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}
Теперь напомню зачем нам нужно было BC:
AC = \frac{BC}{tg \angle A}
Подставляем вместо BC новую подстановку:
AC = \frac{\sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}}{tg \angle A}
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
tg \angle A = 2\sqrt{2}, AB = 6 cm
Найдем, наконец, AC:
AC = \frac{\sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}}{tg \angle A} = \frac{\sqrt{\frac{(6 cm)^2 \cdot (2\sqrt{2})^2}{1+(2\sqrt{2})^2}}}{2\sqrt{2}} = \frac{\sqrt{\frac{36 cm^2 \cdot 8}{1+8}}}{2\sqrt{2}} =
= \frac{\sqrt{32 cm^2}}{2\sqrt{2}} = \sqrt{\frac{32}{2} cm^2} \cdot \frac{1}{2} = \sqrt{16 cm^2} \cdot \frac{1}{2} = 4 cm \cdot \frac{1}{2} = 2 cm
Это ответ.

Втреугольнике abc угол c равен 90° ab=6, tga=2 на корень из 2. найдите ac
Втреугольнике abc угол c равен 90° ab=6, tga=2 на корень из 2. найдите ac
0,0(0 оценок)
Ответ:
krioss
krioss
22.01.2022 01:37

Во первых, хорда не должна превышать размера диаметра окружности. Сначала нужно с циркуля измерить длину отрезка, потом совместить с диаметром окружности, не изменяя раствора циркуля.  В случае, если второй конец циркуля выходит за пределы окружности, задача не имеет решения.

 

Во-вторых, если вышеуказанное не выполнилось, то надо совместить первую ножку циркуля, не меняя раствор циркуля, с любой точкой на окружности, а второй ножкой циркуля подобрать другую точку на окружности. Вообще-то, если отрезок меньше диаметра окружности, то получатся две искомые точки, или два отрезка. В случае же, когда отрезок равен диаметру точки В и С совпадают.

 

Вот и все.


Сданы окружность и отрезок.постройте хордуравную данному отрезку.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота