1. Знайдіть координати точки О, відносно якої симетричні точки А(-4; 1) і В(-2;-3)
а)О(-3;-2) б) (-3;-2) в(3;1) г ( -1.5; -2.5)
2. Середня точка А(3;2), В(-2;-3), С(-3;2) D(-3;-2) виберіть дві які симетричні відносно осі абсцис
а) А і В б) А і С в) В і С г) С і D
3. Виконайте поворот трикутника АВС навколо точки А на 90градусів проти годинникової стрілки
4. Сторони рінобічної трапеції дорівнюють 5см, 4 см, 5 см, 12 см. Знайдіть сторони подібної трапеції, висота якої дорівнює 6 см
5. Сторона рівностороннього трикутника дорівнює 10 см. Прямі, паралельні одній із його сторін, ділять даний трикутник на п'ять рівних за площею фігур. Знайдіть периметр меншого трикутника
По св-ву р/б тр. углы при основании равны =а
2а+120=180
2а=60
а=30
по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона
тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c
но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2
1/2c^2*sqrt(3)/2=9c
c=36/sqrt(3)
трапецию можно вписать окружность;
MN ⊥ AD ; O ∈ [ MN ], O -пересечения диагоналей(MN проходит через O).
M∈ [AD] ,N∈ [BC].
ON -?
S =(AB +BC) /2 *H ,где H - высота трапеции .
По условию задачи трапеция описана окружности , следовательно :
AD+BC =(AB +CD) = P/2 =20/2 =10.
AB =CD =5 ;
S =(AB +BC) /2 *H ;
20 =5*H ⇒ H =4.
Проведем BE ⊥AD и CF ⊥ AD,
AE =DF =√(AB² -BE)² =√(AB² -H²) =√(5² -4²) =3 .
AD -BC =2*3 =6.
{ AD -BC =6 ; AD +BC =10 ⇒AD =8 ; BC =2.
ΔAOD подобен ΔCOB :
BC/AD =ON/ OM ⇔BC/AD =ON/ (H -ON) .
2/8 =ON/ (4 -ON) ⇒ON =0,8.
ответ: 0,8.