1)AB=BC т.к. треугольник равнобедренный AD=DC т.к. в равнобедренном треугольнике высота это ещё и медиана, а медиана делит основание на 2 равные части ответ: по катету и гипотенузе 2)∠BAD=∠BCD т.к. треугольник равнобедренный AB=BC т.к. треугольник равнобедренный ответ по острому углу и гипотенузе 3)∠BAD=∠BCD т.к. треугольник равнобедренный AD=DC т.к. в равнобедренном треугольнике высота ещё и медиана, а медиана делит основание на 2 равные части ответ по катету и острому углу 4)сторона BD общая AD=DC т.к. в равнобедренном треугольнике высота ещё и медиана, а медиана делит основание на 2 равные части ответ по 2-м катетам
Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
AD=DC т.к. в равнобедренном треугольнике высота это ещё и медиана, а медиана делит основание на 2 равные части
ответ: по катету и гипотенузе
2)∠BAD=∠BCD т.к. треугольник равнобедренный
AB=BC т.к. треугольник равнобедренный
ответ по острому углу и гипотенузе
3)∠BAD=∠BCD т.к. треугольник равнобедренный
AD=DC т.к. в равнобедренном треугольнике высота ещё и медиана, а медиана делит основание на 2 равные части
ответ по катету и острому углу
4)сторона BD общая
AD=DC т.к. в равнобедренном треугольнике высота ещё и медиана, а медиана делит основание на 2 равные части
ответ по 2-м катетам
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.