Решение: нам надо дополнить рисунок и из прямоугольной трапеции сделать прямоугольный треугольник( дорисовать 2 прямые из точки B и С) В итоге получится прямоугольный треугольник, у которого один из углов равен 45°
Второй угол так же будет равен 45°, и отсюда следует, что получившийся треугольник равнобедренный с основанием HD ( H- это точка которую ты достраивали в самом начале решения)
HA=AD=17cм HB=17-9=8 cм
Теперь будем рассматривать маленький треугольник HBC
Он тоже равнобедренный и прямоугольный( один угол= 45°, а значит и второй будет равен 45°, потому что сумма всех углов в треугольнике 180°)
HB=BC=8 cм
P.S. Я пыталась написать всё как можно подробнее, чтобы всё было понятно
№2. DABC – тетраэдр. М - середина АD. МК||(АВС). МК=3 см. Найдите длину ребра DC этого тетраэдра.
Тетраэдр — простейший многогранник, гранями которого являются четыре треугольника, т.е. треугольная пирамида. В условии не указаны длины ребер DABC. Поэтому решение даётся для правильного тетраэдра, все ребра которого равны.
МК||(АВС). МК лежит в плоскости ∆ АDC. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой. ⇒ МК║АВ. Так как М – середина АD, а МК||АВ, то МК - средняя линия ∆ АDB и равна половине АВ ⇒ AD=АВ=2•МК=6 см.
* * *
№3. ОАВ - прямоугольный треугольник (∠В=90°), ∠ АОВ=60°, АО=8 см, OF⊥АОВ). Найдите расстояние от точки D до прямой АВ, если OF=3 см.
Расстоянием от точки до прямой является длина отрезка, проведенного из данной точки перпендикулярно данной прямой. Треугольник АОВ прямоугольный, ОВ⊥ВА и является проекцией наклонной FB. По т. о 3-х перпендикулярах FB⊥АВ, поэтому является искомым расстоянием.
FО перпендикулярна плоскости ∆ АОВ. Если прямая, пересекающая плоскость, перпендикулярна этой плоскости, то она перпендикулярна каждой прямой, которая лежит в данной плоскости. ⇒ Треугольник FOB прямоугольный. FO=3 см (дано). ОВ=АО•cos60°=4см. В ∆ FOB по т.Пифагора FВ=√(FO²+OB²)=√(9+16)=5 см
Дано: трапеция ABCD ∠D=45° AB=9 cм AD=17 см
Найти:ВС
Решение: нам надо дополнить рисунок и из прямоугольной трапеции сделать прямоугольный треугольник( дорисовать 2 прямые из точки B и С) В итоге получится прямоугольный треугольник, у которого один из углов равен 45°
Второй угол так же будет равен 45°, и отсюда следует, что получившийся треугольник равнобедренный с основанием HD ( H- это точка которую ты достраивали в самом начале решения)
HA=AD=17cм HB=17-9=8 cм
Теперь будем рассматривать маленький треугольник HBC
Он тоже равнобедренный и прямоугольный( один угол= 45°, а значит и второй будет равен 45°, потому что сумма всех углов в треугольнике 180°)
HB=BC=8 cм
P.S. Я пыталась написать всё как можно подробнее, чтобы всё было понятно
№2. DABC – тетраэдр. М - середина АD. МК||(АВС). МК=3 см. Найдите длину ребра DC этого тетраэдра.
Тетраэдр — простейший многогранник, гранями которого являются четыре треугольника, т.е. треугольная пирамида. В условии не указаны длины ребер DABC. Поэтому решение даётся для правильного тетраэдра, все ребра которого равны.
МК||(АВС). МК лежит в плоскости ∆ АDC. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой. ⇒ МК║АВ. Так как М – середина АD, а МК||АВ, то МК - средняя линия ∆ АDB и равна половине АВ ⇒ AD=АВ=2•МК=6 см.
* * *
№3. ОАВ - прямоугольный треугольник (∠В=90°), ∠ АОВ=60°, АО=8 см, OF⊥АОВ). Найдите расстояние от точки D до прямой АВ, если OF=3 см.
Расстоянием от точки до прямой является длина отрезка, проведенного из данной точки перпендикулярно данной прямой. Треугольник АОВ прямоугольный, ОВ⊥ВА и является проекцией наклонной FB. По т. о 3-х перпендикулярах FB⊥АВ, поэтому является искомым расстоянием.
FО перпендикулярна плоскости ∆ АОВ. Если прямая, пересекающая плоскость, перпендикулярна этой плоскости, то она перпендикулярна каждой прямой, которая лежит в данной плоскости. ⇒ Треугольник FOB прямоугольный. FO=3 см (дано). ОВ=АО•cos60°=4см. В ∆ FOB по т.Пифагора FВ=√(FO²+OB²)=√(9+16)=5 см