1.знайдіть вписаний кут, якщо дуга, на яку він спирається, дорівнює 46 градусів. 2. знайдіть центральний кут, якщо дуга, на яку він спирається, дорівнює 64 градусів.
3. знайдіть дугу, на яку спирається вписаний кут, що дорівнює 62 градусів.
Проведём радиусы ОА и ОД окружности описанной около треугольника АDF(смотри рисунок). Угол АОД окружности (на рисунке не показана)-центральный, а АFД –вписаный. Но они оба опираются на одну дугу АД. То есть угол АОД в два раза больше угла АFД(условно обозначен 1).Треугольник АОД- равнобедренный(АО и ОД радиусы), высота ОЕ делит угол АОД пополам. Отсюда угол ОАЕ=90-угол1. Далее- угол СВД равен углу АFВ как накрест лежащие поскольку АF параллельна ВС. Но угол СВД равен углу САД поскольку они оба опираются на дугу СД. Тогда угол ОАС =угол САД+ угол ОАД=угол1+угол90-угол1=90градусов. То есть радиус ОА окружности описанной около АДF перпендикулярен АС. А это значит , что окружность касается этой прямой
Центром вписанной в треугольник окружности является точка пересечения биссектрис углов треугольника. Если точка пересечения биссектрис и точка пересечения медиан совпадают, то медианы треугольника являются и его биссектрисами. Следовательно, данный треугольник - равносторонний. Медианы треугольника пересекаются в одной точке. Точка пересечения медиан делит их в отношении 2:1, считая от вершины. Прямая , параллельная стороне треугольника и равная 2 см, делит его на подобные треугольники с коэффициентом подобия 3:2 (вся медиана - 3 части, от вершины до точки пересечения медиан- 2 части, следовательно, и k=3:2) Тогда таким же будет и отношение сторон всего треугольника к сторонам отсекаемого, т.е. к длине отрезка, на котором лежит центр окружности. Обозначим сторону треугольника а. а:2=3:2 2а=6 а=3 см Периметр - сумма длин всех трех сторон треугольника. Р=3•3=9 cм ---------- Если не прямая, на которой лежит центр окружности, равна 2 см, а сторона треугольника, тогда, естественно, периметр равен 6 см. Главное - определить, что треугольник равносторонний.
Центром вписанной в треугольник окружности является точка пересечения биссектрис углов треугольника.
Если точка пересечения биссектрис и точка пересечения медиан совпадают, то медианы треугольника являются и его биссектрисами.
Следовательно, данный треугольник - равносторонний.
Медианы треугольника пересекаются в одной точке. Точка пересечения медиан делит их в отношении 2:1, считая от вершины.
Прямая , параллельная стороне треугольника и равная 2 см, делит его на подобные треугольники с коэффициентом подобия 3:2 (вся медиана - 3 части, от вершины до точки пересечения медиан- 2 части, следовательно, и k=3:2)
Тогда таким же будет и отношение сторон всего треугольника к сторонам отсекаемого, т.е. к длине отрезка, на котором лежит центр окружности.
Обозначим сторону треугольника а.
а:2=3:2
2а=6
а=3 см
Периметр - сумма длин всех трех сторон треугольника.
Р=3•3=9 cм
----------
Если не прямая, на которой лежит центр окружности, равна 2 см, а сторона треугольника, тогда, естественно, периметр равен 6 см. Главное - определить, что треугольник равносторонний.