Более 4000 тысяч лет назад у одного человека из рук выпала фарфоровая плитка и разбилась на семь частей. Расстроенный, он в спешке старался ее сложить, но каждый раз получал все новые интересные изображения. Это занятие оказалось настолько увлекательным, что впоследствии квадрат, составленный из семи геометрических фигур, назвали Доской Мудрости.
Легенда вторая: три мудреца придумали «Ши-Чао-Тю».
Появление этой китайской головоломки связано с красивой легендой. Почти две с половиной тысячи лет тому назад у немолодого императора Китая родился долгожданный сын и наследник. Шли годы. Мальчик рос здоровым и сообразительным не по летам.Одно беспокоило старого императора: его сын, будущий властелин огромной страны, не хотел учиться. Мальчику доставляло большее удовольствие целый день забавляться игрушками. Император призвал к себе трех мудрецов, один из которых был известен как математик, другой прославился как художник, а третий был знаменитым философом, и повелел им придумать игру, забавляясь которой, его сын постиг бы начала математики, научился смотреть на окружающий мир пристальными глазами художника, стал бы терпеливым, как истинный философ, и понял бы, что зачастую сложные вещи состоят из простых вещей. Три мудреца придумали "Ши-Чао-Тю"- квадрат, разрезанный на семь частей.
Так как не известен угол наклона боковой стороны, то проще всего построить треугольник, когда боковая сторона горизонтальна. 1) Проводим горизонтальный отрезок произвольной длины. 2) В любой её точке восстанавливаем перпендикуляр длиной, равной заданной высоте. Это первая вершина треугольника. 3) Из конца высоты раствором циркуля, равным длине боковой стороны, делаем засечку на горизонтальной прямой. Получаем вторую вершину треугольника. 4) Из неё раствором циркуля, равным длине боковой стороны, делаем засечку на горизонтальной прямой и получаем третью вершину треугольника.
Можно скомбинировать графический и аналитический методы построения. Отношение высоты к боковой стороне - это синус угла при вершине. Найти по синусу угол, разделить его пополам. Провести перпендикуляр, от его конца отложить полученное значение половины угла при вершине и провести отрезки в обе стороны от перпендикуляра. На них отложить длины боковых сторон и соединить основание.
Легенда вторая: три мудреца придумали «Ши-Чао-Тю».
Появление этой китайской головоломки связано с красивой легендой. Почти две с половиной тысячи лет тому назад у немолодого императора Китая родился долгожданный сын и наследник. Шли годы. Мальчик рос здоровым и сообразительным не по летам.Одно беспокоило старого императора: его сын, будущий властелин огромной страны, не хотел учиться. Мальчику доставляло большее удовольствие целый день забавляться игрушками. Император призвал к себе трех мудрецов, один из которых был известен как математик, другой прославился как художник, а третий был знаменитым философом, и повелел им придумать игру, забавляясь которой, его сын постиг бы начала математики, научился смотреть на окружающий мир пристальными глазами художника, стал бы терпеливым, как истинный философ, и понял бы, что зачастую сложные вещи состоят из простых вещей. Три мудреца придумали "Ши-Чао-Тю"- квадрат, разрезанный на семь частей.
1) Проводим горизонтальный отрезок произвольной длины.
2) В любой её точке восстанавливаем перпендикуляр длиной, равной заданной высоте. Это первая вершина треугольника.
3) Из конца высоты раствором циркуля, равным длине боковой стороны, делаем засечку на горизонтальной прямой. Получаем вторую вершину треугольника.
4) Из неё раствором циркуля, равным длине боковой стороны, делаем засечку на горизонтальной прямой и получаем третью вершину треугольника.
Можно скомбинировать графический и аналитический методы построения.
Отношение высоты к боковой стороне - это синус угла при вершине.
Найти по синусу угол, разделить его пополам.
Провести перпендикуляр, от его конца отложить полученное значение половины угла при вершине и провести отрезки в обе стороны от перпендикуляра. На них отложить длины боковых сторон и соединить основание.