1. Знайти відстань між центрами кіл, які дотикаються зовнішнім чином, якщо їхні радіуси дорівнюють 5,7 дм та 35 см. 2. Відстань між центрами двох кіл , які дотикаються внутрішнім чином, дорівнює 36 см. Знайти радіуси цих кіл, якщо один із них у 4 рази більший за інший.
∠АDВ=180°-60°-90°=30°
Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°.
При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60°
⇒ АВСD - равнобедренная трапеция(по признаку)
Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120°
∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120°
ответ: 60°, 60°, 120°, 120°
Площадь трапеции равна полусумма оснований умноженная на высоту трапеции. Значит 6/2 *h=6, 3h=6, h=2. Высота трапеции равна 2. Высота трапеции равна диаметру круга. Значит радиус круга равен 2/2=1.
Площадь круга равна pi*r^2. S=pi*1^2=pi.
ответ: площадь круга равна pi.