Дана равнобедренная травеция ABCD. Угол В=120гр. т.к. трапеция равнобедренная, то угол С=тоже 120гр., а углы основания равны по (360-120-120):2=60 градусов.
Из угла В проведена прямая ВК, параллельная стороне СD. Меньшее основание ВС=16см. АК=12см.
Найти периметр АВСD.
Имеем параллельные прямые ВС и АD, ВК и СД. Угол СВК=углу ВКА как накрест лежащие. Угол СDК=углу ВКА=60гр., как соответственные углы => угол СВК=углу ВКА=60 гр.
т.к. угол АВС=120гр, а угол КВС=60гр, то угол АВК=120-60=60гр. => имеем треугольник АВК, у которого все углы равны 60 градусов => треугольник равносторонний => ВК=АВ=АК=12см
ВС=КD=16см (расстояние между параллельными прямыми)
1) 5+10 = 15 см - длина АВ
2) 15²-12²=ВС². (По теореме Пифагора) 225-144=81, ВС =√81=9 см (ВС=9 см)
3) Площ. АВС находим так (АС*ВС)÷2 , т.е. (12*9)÷2=54 см²
Теперь надо найти площ. треугольника МВК и вычесть ее из площ. АВС.
4) Т.к. углы АСВ и МКВ - прямые, а АВ=10 см, что составляет 2/3 от АВ, то ВК равно 2/3 от ВС, т.е. 6 см. ВК=6 см.
5) По теор. Пифагора МВ²-ВК²=МК², т.е 100-36=64, МК-√64=8 см
6) Площ. МВК находим так (МК*ВК)÷2 , т.е. (8*6)÷2= 24 см²
7) Площ. четырехугол. АМКС = 54-24=30 (30 см²)
Дана равнобедренная травеция ABCD. Угол В=120гр. т.к. трапеция равнобедренная, то угол С=тоже 120гр., а углы основания равны по (360-120-120):2=60 градусов.
Из угла В проведена прямая ВК, параллельная стороне СD. Меньшее основание ВС=16см. АК=12см.
Найти периметр АВСD.
Имеем параллельные прямые ВС и АD, ВК и СД. Угол СВК=углу ВКА как накрест лежащие. Угол СDК=углу ВКА=60гр., как соответственные углы => угол СВК=углу ВКА=60 гр.
т.к. угол АВС=120гр, а угол КВС=60гр, то угол АВК=120-60=60гр. => имеем треугольник АВК, у которого все углы равны 60 градусов => треугольник равносторонний => ВК=АВ=АК=12см
ВС=КD=16см (расстояние между параллельными прямыми)
АD=12+16=28см
Периметр=12+12+16+28=68см