Треугольники называются равными, если они совпадают при наложении. Да, это правило совершенно верно, но существует ещё одно правило про равенство треугольников...
Фигуры (в том числе и треугольники), симметричные относительно прямой, равны.
Это правило и отвечает на Ваш вопрос.
К тому же, треугольники, симметричные относительно какой-то прямой ( или оси ) совпадают при наложении. Во вложении к этому ответу есть картинка, по которой в этом можно убедиться. Если зрительно наложить один треугольник на другой, то они совпадут.
Треугольники называются равными, если они совпадают при наложении. Да, это правило совершенно верно, но существует ещё одно правило про равенство треугольников...
Фигуры (в том числе и треугольники), симметричные относительно прямой, равны.
Это правило и отвечает на Ваш вопрос.
К тому же, треугольники, симметричные относительно какой-то прямой ( или оси ) совпадают при наложении. Во вложении к этому ответу есть картинка, по которой в этом можно убедиться. Если зрительно наложить один треугольник на другой, то они совпадут.
Рассмотрим ΔABC:
∠CAB = 55°; ∠ACB = 35°;
∠ABC = 180°-(∠CAB+∠ACB) = 180°-(55°+35°) = 180°-90° = 90°.
Рассмотрим ΔADC:
∠DAC = 22°; ∠ACD = 68°;
∠ADC = 180°-(∠DAC+∠ACD) = 180°-(22°+68°) = 180°-90° = 90°.
ΔABC и ΔADC прямоугольные.
В прямоугольном треугольнике медиана проведённая к гипотенузе равна её половине.M - середина AC, поэтому BM - медиана ΔABC; DM - медиана ΔADC.
2·BM = AC;
2·DM = AC;
BM = MC = MD.
В равнобедренном треугольнике углы при основании равны.ΔBMC - равнобедренный (BM=MC), BC - основание;
∠MBC = ∠BCM = 35°;
∠CMB = 180°-2·∠BCM = 180°-2·35° = 180-70° = 110°.
ΔDMC - равнобедренный (MC=MD), DC - основание;
∠MDC = ∠DCM = 68°;
∠DMC = 180°-2∠DCM = 180°-2·68° = 180°-136° = 44°.
∠DMB = ∠CMB+∠DMC = 110°+44° = 154°.
ΔDMB - равнобедренный (BM=MD), BD - основание;
∠DBM = ∠BDM = (180°-∠DMB):2 = (180°-154°):2 = 26°:2 = 13°.
ответ: 13°.