а) Дан внешний угол при вершине В, противолежащей осноанию. Внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
По условию ∆ АВС - равнобедренный. Поэтому ∠А=∠С=140°:2=70°.
б) Данный внешний угол - смежный с одним из внутренних углов при основании треугольника АВС. Развернутый угол АСК равен сумме смежных углов = 180°. ⇒ угол ВСМ=180°-140°=40°
∠ВАС=∠ВСМ=40°
Внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Угол ВАС+СВА=140° ⇒ ∠АВС=140°=40°=100°
Если АМ=ВL=СР=DQ, расположенные на сторонам квадрата, то будут равны и отрезки МВ=LC=DP=AQ соответственно.Так как у квадрата стороны имеют прямые углы, то мы имеем 4 прямоугольных треугольника с попарно равными катетами, соответственно.Отсюда эти 4треугольника равны по 2 катетам.Значит и гипотенузы этого треугольника ML=LP=PQ=QM. Углы каждого треугольника дают нам при основании гипотенузы сумму 90* ;Поэтому углыM,L,P и Q каждый равен 90*; Следовательно имея равные стороны и прямые углы, данная фигура-КВАДРАТ!
ответ: а) 40°, 70°, 70°. б) 40°, 40°, 100°.
Задача имеет два решения.
а) Дан внешний угол при вершине В, противолежащей осноанию. Внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
По условию ∆ АВС - равнобедренный. Поэтому ∠А=∠С=140°:2=70°.
б) Данный внешний угол - смежный с одним из внутренних углов при основании треугольника АВС. Развернутый угол АСК равен сумме смежных углов = 180°. ⇒ угол ВСМ=180°-140°=40°
∠ВАС=∠ВСМ=40°
Внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Угол ВАС+СВА=140° ⇒ ∠АВС=140°=40°=100°