100 1)в основе прямоугольной призмы лежит ромб одна из диагоналей которого 126 см, а сторона ромба 105 см найдите объем призмы если ее высота равна 1/242)найти обьем правильной четырехугольной пирамиды ,если высота пирамиды=h,а боковое ребро наклонено к плоскости основания под углом a3)основой пирамиды является ромб со стороной 5 см и углом 135°.двухгранные углы при основании равны и ровняются 45°.найдите площадь боковой поверхности пирамиды
ABCD - квадрат со стороной, равной α, BM ⊥ ABC, BM = α. Найдите двугранный угол, образованный гранями AMD и CMD.
Объяснение:
1) Пусть АР⊥MD, соединим Р и С.
Т.к. АВ⊥AD, то по т. о трех перпендикулярах МА⊥AD⇒ΔAMD-прямоугольный. Т.к. ВС⊥СD, то по т. о трех перпендикулярах МС⊥CD ⇒ΔCMD-прямоугольный
2) Прямоугольные ΔAMD=ΔCMD по катету ( AD=CD стороны квадрата) и гипотенузе (MD--общая), значит и СР⊥MD, Поэтому ∠АРС-линейный угол двугранного , образованный гранями AMD и CMD.
3 ) Применим т. косинусов для ΔАРС :
АС²=АР²+РС²-2*АР*РС*cos∠APC. Найдем отрезки АС, АР, РС.
4) Из ΔАВС , АС²=2а² , АС=а√2.
Из ΔАВМ , АМ²=2а² , АМ=а√2.
Из ΔАМD , DM²=2а²+a² , DM²=3a² ,DM=a√3 .
ΔADM подобен ΔPDA по 2-м углам : ∠D-общий , ∠МАD=∠APD=90°, значит сходственные стороны пропорциональны ,
АР=(AD*AM):DM=(а*а√2) :a√3=a* .
ΔADP=ΔCDP как прямоугольные по катету и гипотенузе⇒РС=a* .
4) "Закидываем " найденные значения в АС²=АР²+РС²-2*АР*РС*cos∠APC.
(а√2)²=2*(a* )²-2*(a* ) cos∠APC ,
2a²=2a² * -2a² * *cos∠APC ,
1= (1 - cos∠APC) , cos∠APC= -0,5 ,∠APC=120° .
∆АМС - рівнобедрений
Объяснение:
Доведения:
Нехай дано ∆АВС - рівнобедрений (АВ = ВС), АЕ - медіана,
CF - медіана, АЕ i CF перетинаються в точці М.
Доведемо, що ∆АМС - рівнобедрений.
Розглянемо ∆AFC i ∆СЕА.
1) ∟A = ∟C (∆АВС - рівнобедрений).
2) АС - спільна.
3) AF = 1/2АВ, CF - медіана. СЕ = 1/2ВС, АЕ - медіана.
АВ =ВС (∆АВС - рівнобедрений). AF = СЕ.
Отже, ∆AFC = ∆СЕА за I ознакою piвностi трикутників,
з цього випливає, що ∟EAC = ∟FCA.
Розглянемо ∆АМС.
Оскільки ∟MAC = ∟MCA, то ∆АМС - рівнобедрений