Для решения этой задачи нужно вспомнить, что в треугольнике с проведёнными высотами есть множество пар равных углов. В частности, в треугольнике KGB KN⊥GB, GM⊥KB, углы между соответственно перпендикулярными прямыми равны, значит ∠KLM=∠GBК.
Даны высоты KN и GM и угол между ними α. Построим треугольник.
Построим угол АВС равный α. На стороне АВ построим окружности с радиусами AH и IJ, равными высоте KN. Проведём общую касательную к окружностям HJ. Имеем точку пересечения со стороной ВС, обозначим её К. Построим перпендикуляр KN к стороне АВ. Действительно, KN - наша высота, ведь она параллельна АН и IJ и перпендикулярна АВ и HJ.
Аналогично получаем точку G. Строить высоту GM уже не нужно, но если построить, то точка пересечения L высот KN и GM даст угол KLM, равный углу АВС, то есть α.
В частности, в треугольнике KGB KN⊥GB, GM⊥KB, углы между соответственно перпендикулярными прямыми равны, значит ∠KLM=∠GBК.
Даны высоты KN и GM и угол между ними α. Построим треугольник.
Построим угол АВС равный α.
На стороне АВ построим окружности с радиусами AH и IJ, равными высоте KN. Проведём общую касательную к окружностям HJ. Имеем точку пересечения со стороной ВС, обозначим её К. Построим перпендикуляр KN к стороне АВ. Действительно, KN - наша высота, ведь она параллельна АН и IJ и перпендикулярна АВ и HJ.
Аналогично получаем точку G. Строить высоту GM уже не нужно, но если построить, то точка пересечения L высот KN и GM даст угол KLM, равный углу АВС, то есть α.
Треугольник KGB - наш треугольник.
1. Циркулем (иголкой на точке А) произвольным радиусом делаем пометки на отрезке AB (называем точкой Q) и на отрезке AC (называем точкой S).
AQ = AS = R
2. На циркуле устанавливаем радиус больше чем половина QS. Лучше чтобы этот радиус был чуть больше половины QS.
Этим радиусом делаем две дуги (внутри угла), в первом случае игла на точке Q, во втором - на S
Две эти дуги пересекутся один (точка D) или два раза (точка E).
3. Если с линейки соединить A и D или A и E, получится биссектриса угла BAC.