1. По условию стороны первого треугольника равны 3,4мм, 4,7мм, 5мм.
Стороны второго треугольника равны
и 6,8см = 68 мм, 9,4см = 94 мм, 10см = 100 мм.
2. Проверим, будут ли стороны треугольников пропорциональны, учитывая, что большей стороне первого. треугольника соответствует большая сторона второго треугольника, а3,_3 меньшей - меньшая.
100/5 = 20;
94/4,7 = 940/47 = 20;
68/3,4 = 680/34 = 20.
Получил , что
100/5 = 94/4,7 = 68/3,4 .
Так три стороны первого треугольника пропорциональны соответственно трём сторонам второго треугольника, то такие треугольники подобны по третьему признаку подобия.
Пусть дан прямоугольный треугольник АВС с прямым углом А, тогда
высота прямоугольного треугольника ВН, проведённая к гипотенузе ВС, есть среднее пропорциональное между проекциями катетов на гипотенузу, т. е. АН = корню квадратному из ВН*НС=12 (см)
тогда рассмотрим треугольник ВАН (прямоугольный, с прямым углом ВНА), и по теореме Пифагора получаем, что ВА в квадрате=ВНквадрат+НАквадрат
ВА квадрат=9 в квадрате+12 в квадрате, ВА квадрат=81+144=225=>
ВА=корень квадратный из 225, ВА=15 (см_)
тогда берём первоначальный треугольник АВС и по теореме Пифагора находим катет АС,
АС квадрат=ВС квадрат-ВА квадрат, ВС=ВН+НС=9+16=25 (см)
треугольники подобны.
Объяснение:
1. По условию стороны первого треугольника равны 3,4мм, 4,7мм, 5мм.
Стороны второго треугольника равны
и 6,8см = 68 мм, 9,4см = 94 мм, 10см = 100 мм.
2. Проверим, будут ли стороны треугольников пропорциональны, учитывая, что большей стороне первого. треугольника соответствует большая сторона второго треугольника, а3,_3 меньшей - меньшая.
100/5 = 20;
94/4,7 = 940/47 = 20;
68/3,4 = 680/34 = 20.
Получил , что
100/5 = 94/4,7 = 68/3,4 .
Так три стороны первого треугольника пропорциональны соответственно трём сторонам второго треугольника, то такие треугольники подобны по третьему признаку подобия.
Пусть дан прямоугольный треугольник АВС с прямым углом А, тогда
высота прямоугольного треугольника ВН, проведённая к гипотенузе ВС, есть среднее пропорциональное между проекциями катетов на гипотенузу, т. е. АН = корню квадратному из ВН*НС=12 (см)
тогда рассмотрим треугольник ВАН (прямоугольный, с прямым углом ВНА), и по теореме Пифагора получаем, что ВА в квадрате=ВНквадрат+НАквадрат
ВА квадрат=9 в квадрате+12 в квадрате, ВА квадрат=81+144=225=>
ВА=корень квадратный из 225, ВА=15 (см_)
тогда берём первоначальный треугольник АВС и по теореме Пифагора находим катет АС,
АС квадрат=ВС квадрат-ВА квадрат, ВС=ВН+НС=9+16=25 (см)
АС квадрат = 25 в квадрате-15 в квадрате
АС квадрат=625-225=400
АС=корень квадратный из 400=20 (см)
ответ: 20 см и 15 см