ромба)=4*a a = 128/4=32 S(ромба)= a^2 * sina ___S= 32^2* (корень из 3)/2=16*32* (корень из 3)=512* (корень из 3)
ромба)=4*a a = 128/4=32 S(ромба)= a*h. Опускаем высоту в ромбе. Получаем прямоугольный треугольник с углами 90 градусов, 60, градусов и 30 градусов ( 180-(90+60)=30градусов) Зная теорему, катет лежащий против 30 градусов равен половине гипотенузы, находим катет. 32/2=16 Тогда по теореме Пифагора вычисляем высоту: h= корень из (32^2-16^2)=корень из (1024-256)= корень из 768=16* (корень из 3) S= 32* 16*( корень из 3)= 512* (корень из 3)
S(ромба)= a^2 * sina ___S= 32^2* (корень из 3)/2=16*32* (корень из 3)=512* (корень из 3)
ромба)=4*a a = 128/4=32
S(ромба)= a*h. Опускаем высоту в ромбе. Получаем прямоугольный треугольник с углами 90 градусов, 60, градусов и 30 градусов ( 180-(90+60)=30градусов)
Зная теорему, катет лежащий против 30 градусов равен половине гипотенузы, находим катет. 32/2=16
Тогда по теореме Пифагора вычисляем высоту: h= корень из (32^2-16^2)=корень из (1024-256)= корень из 768=16* (корень из 3)
S= 32* 16*( корень из 3)= 512* (корень из 3)
По-моему, первый гораздо легче
Из треугольника АВС по теореме косинусов:
ВС² = AB² + AC² - 2·AB·AC·cosA = 25 + 16 - 2 · 5 · 4 · 1/2
BC² = 41 - 20 = 21
BC = √21 см
Плоскости АВС и α параллельны, АВ лежит в плоскости АВС, значит АВ║α.
Параллельные прямые АА₁ и ВВ₁ задают плоскость. Назовем ее β.
Через прямую АВ, параллельную плоскости α, проходит плоскость β и пересекает плоскость α. Тогда линия пересечения плоскостей параллельна прямой АВ.
Итак, АВ║А₁В₁, АА₁║ВВ₁, значит АА₁В₁В - параллелограмм, значит АВ = А₁В₁.
Аналогично доказываем, что ВС = В₁С₁ и АС = А₁С₁.
Тогда ΔА₁В₁С₁ равен ΔАВС по трем сторонам. Значит
А₁В₁ = АВ = 5 см,
В₁С₁ = ВС = √21 см
А₁С₁ = АС = 4 см.